高中数学数列的极限
2个回答
展开全部
(n^3-1)/(3n^2+n)-(n^2+1)/(3n+4)
=1/3 ( ((3n^3+n^2)-n^2-3)/(3n^2+n) - ((3n^2+4n)-4n+3)/(3n+4) )
=1/3 ( n-(n^2+3)/(3n^2+n) - (n-(4n-3)/(3n+4)) )
=1/3 ( (4n-3)/(3n+4)-(n^2+3)/(3n^2+n) )
当n->∞时, 易知 (4n-3)/(3n+4)-(n^2+3)/(3n^2+n)-> 4/3 - 1/3=1
因此 原式->1/3
=1/3 ( ((3n^3+n^2)-n^2-3)/(3n^2+n) - ((3n^2+4n)-4n+3)/(3n+4) )
=1/3 ( n-(n^2+3)/(3n^2+n) - (n-(4n-3)/(3n+4)) )
=1/3 ( (4n-3)/(3n+4)-(n^2+3)/(3n^2+n) )
当n->∞时, 易知 (4n-3)/(3n+4)-(n^2+3)/(3n^2+n)-> 4/3 - 1/3=1
因此 原式->1/3
更多追问追答
追问
不好意思,我这一步没看懂,为什么当n->∞时, 易知 (4n-3)/(3n+4)-(n^2+3)/(3n^2+n)-> 4/3 - 1/3=1?怎么看接近无穷的时候它的最值?
追答
(4n-3)/(3n+4) = (4-3/n)/ (3+4/n) -> 4/3
(n^2+3)/(3n^2+n) = (1+3/n^2)/(3+1/n) -> 1/3
另外提醒你一下, 采纳的答案算错了,第一步等号上面怎么都乘的是(3n+4),通分错了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询