请问下这题的一个式子怎么化简
函数f<X>=(log2[x]-1)/(log2[x]+1)若,f<4x1>+f<4x2>=1怎么化简到log2[x1]+log2[x2]+logx[x1]log2[x2...
函数f<X>=(log2[x]-1)/(log2[x]+1)若,f<4x1>+f<4x2>=1
怎么化简到log2[x1]+log2[x2]+logx[x1]log2[x2]=3
2是log的底数,[ ]是真数部分
要详解,谢谢了,我解了好久= = 展开
怎么化简到log2[x1]+log2[x2]+logx[x1]log2[x2]=3
2是log的底数,[ ]是真数部分
要详解,谢谢了,我解了好久= = 展开
展开全部
应该是:log2[x1]+log2[x2]+log2[x1]log2[x2]=3 (你的第三个logx是打错了吧)
f<4x1>+f<4x2>=1→
(log2[4x1]-1)/(log2[4x1]+1)+(log2[4x2]-1)/(log2[4x2]+1)=1→把4和X分出来
(log2[4]+log2[x1]-1)/(log2[4]+log2[x1]+1)+(log2[4]+log2[x2]-1)/(log2[4]+log2[x2]+1)=1→计算各项
(log2[x1]+1)/(log2[x1]+3)+(log2[x2]+1)/(log2[x2]+3)=1→通分
[(log2[x1]+1)(log2[x2]+3)+(log2[x2]+1)(log2[x1]+3)]/[(log2[x1]+3)(log2[x2]+3)]=1→
分子分母相等并展开
3+log2[X2]+3log2[x1]+log2[x1]*log2[x2]+3+log2[x1]+3log2[x2]+log2[x2]*log2[x1]=9+log2[x1]*log2[x2]+3log2[x1]+3log2[x2]→左右相消就可以得到
log2[x1]+log2[x2]+log2[x1]log2[x2]=3
因为只能打字,图片我上传不了,你将就着看吧,明白思路就行。
f<4x1>+f<4x2>=1→
(log2[4x1]-1)/(log2[4x1]+1)+(log2[4x2]-1)/(log2[4x2]+1)=1→把4和X分出来
(log2[4]+log2[x1]-1)/(log2[4]+log2[x1]+1)+(log2[4]+log2[x2]-1)/(log2[4]+log2[x2]+1)=1→计算各项
(log2[x1]+1)/(log2[x1]+3)+(log2[x2]+1)/(log2[x2]+3)=1→通分
[(log2[x1]+1)(log2[x2]+3)+(log2[x2]+1)(log2[x1]+3)]/[(log2[x1]+3)(log2[x2]+3)]=1→
分子分母相等并展开
3+log2[X2]+3log2[x1]+log2[x1]*log2[x2]+3+log2[x1]+3log2[x2]+log2[x2]*log2[x1]=9+log2[x1]*log2[x2]+3log2[x1]+3log2[x2]→左右相消就可以得到
log2[x1]+log2[x2]+log2[x1]log2[x2]=3
因为只能打字,图片我上传不了,你将就着看吧,明白思路就行。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询