已知数列{an}中,a1=5,an=2a(n-1)+2的(-n)次方(n为大于等2的)
设bn=a(n+1)/2(n+1)-an/2^n(n>=1),求证{bn}是等比数列。求数列{an}的前n项和sn...
设bn=a(n+1)/2(n+1)-an/2^n (n>=1),求证{bn}是等比数列。
求数列{an}的前n项和sn 展开
求数列{an}的前n项和sn 展开
展开全部
a(n+1)=2a(n) + 2^(n+1),
a(n+1)/2^(n+1) = a(n)/2^n + 1,
b(n) = a(n+1)/2^(n+1) - a(n)/2^n = 1,
{b(n) = 1}是首项为1,公比为1的等比数列。
a(n+1)/2^(n+1) = a(n)/2^n + 1
{a(n)/2^n}是首项为a(1)/2=5/2, 公差为1的等差数列。
a(n)/2^n = 5/2 + (n-1) = n + 3/2 = (2n+3)/2,
a(n) = (2n+3)2^(n-1),
s(n) = (2*1+3) + (2*2+3)2^1 + ... + [2(n-1)+3]2^(n-2) + (2n+3)2^(n-1)
2s(n)=(2*1+3)2^1 + (2*2+3)2^2 + ... + [2(n-1)+3]2^(n-1)+(2n+3)2^n,
s(n)=2s(n)-s(n)=-(2*1+3) - 2*2^1 - ... - 2*2^(n-1) + (2n+3)2^n
=(2n+3)2^n - 5 - 4(1+2+...+2^(n-2))
=(2n+3)2^n - 5 - 4[2^(n-1) - 1]/(2-1)
=(2n+3)2^n - 5 - 4[2^(n-1) - 1]
=(2n+3-2)2^n - 5 + 4
=(2n+1)2^n - 1
a(n+1)/2^(n+1) = a(n)/2^n + 1,
b(n) = a(n+1)/2^(n+1) - a(n)/2^n = 1,
{b(n) = 1}是首项为1,公比为1的等比数列。
a(n+1)/2^(n+1) = a(n)/2^n + 1
{a(n)/2^n}是首项为a(1)/2=5/2, 公差为1的等差数列。
a(n)/2^n = 5/2 + (n-1) = n + 3/2 = (2n+3)/2,
a(n) = (2n+3)2^(n-1),
s(n) = (2*1+3) + (2*2+3)2^1 + ... + [2(n-1)+3]2^(n-2) + (2n+3)2^(n-1)
2s(n)=(2*1+3)2^1 + (2*2+3)2^2 + ... + [2(n-1)+3]2^(n-1)+(2n+3)2^n,
s(n)=2s(n)-s(n)=-(2*1+3) - 2*2^1 - ... - 2*2^(n-1) + (2n+3)2^n
=(2n+3)2^n - 5 - 4(1+2+...+2^(n-2))
=(2n+3)2^n - 5 - 4[2^(n-1) - 1]/(2-1)
=(2n+3)2^n - 5 - 4[2^(n-1) - 1]
=(2n+3-2)2^n - 5 + 4
=(2n+1)2^n - 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询