矩阵A乘以A的转置为什么等于A的行列式的平方

矩阵A乘以A的转置为什么等于A的行列式的平方... 矩阵A乘以A的转置为什么等于A的行列式的平方 展开
帐号已注销
2020-12-16 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

||^

|AA^T| = |A| |A^T| = |A||A| = |A|^2

det(AB)=det(A)det(B)(证明起不那么容易,也算是基本性质之一)

det(A^T)=det(A)(行列式的shu基本性质)

∴det(A*A^T)=det(A)det(A^T)=det(A)^2

因为A*A^T是一个矩阵,而A的行列式的平方是一个数,两者是不相等的。

扩展资料:

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

参考资料来源:百度百科-行列式

上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
轮看殊O
高粉答主

2020-12-15 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:741万
展开全部

因为矩阵A 和矩阵A的转置,它们的行列式是相等的。

|A|=|A'| 转置矩阵的行列式等于原矩阵的行列式

而乘积矩阵的行列式等于行列式的乘积 |AA'|=|A||A'|

所以 |AA'|=|A||A'|=|A||A|=|A|²

扩展资料

1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。

2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
剧情猜你爱
2019-11-19 · TA获得超过3816个赞
知道大有可为答主
回答量:3073
采纳率:30%
帮助的人:178万
展开全部
det(AB)=det(A)det(B)(证明起来不那么容易,也算是基本性质之一)
det(A^T)=det(A)(行列式的基本性质)
∴det(A*A^T)=det(A)det(A^T)=det(A)^2
你说的是这个意思吧?
实际上你的表述是不正确的,因为A*A^T是一个矩阵,而A的行列式的平方是一个数,两者是不相等的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lry31383
高粉答主

2013-07-25 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
|AA^T| = |A| |A^T| = |A||A| = |A|^2
更多追问追答
追问
不是AAT的行列式,就是A乘以AT,我问的是为什么AAT=|A|^2
追答
这不会. AA^T 是一个矩阵, |A|^2 是一个数
肯定是 AA^T 的行列式
来自:求助得到的回答
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式