数学中公理怎样的来的?

magingsun
2013-07-25 · TA获得超过568个赞
知道小有建树答主
回答量:334
采纳率:0%
帮助的人:244万
展开全部
是前人根据推导发现的一定正确的定理,后来人就不需要再推导,可以作为既定的条件来进行使用就可以了。
知识小达人GM
2013-07-25 · TA获得超过223个赞
知道答主
回答量:83
采纳率:0%
帮助的人:111万
展开全部
公理,指的是一些不证自明的的命题,是数学中很多逻辑推理的基础,由公理推出的命题叫定理。
不证自明性是公理的特点,这也是为什么数学家质疑欧几里得的第五公设——平行公理的原因,平行公理看起来并不象其他几条公理一样明白了当(比如第一条公设:任意两个点可以通过一条直线连接),而非欧几何的建立,也正说明了第五公设的不必要性。
从一方面说,公理也可以看作是对于一些一般经验的总结,这些总结是无可争议的正确的,还用第一公设说,“任意两个点可以通过一条直线连接”不管这直线如何定义,总之两点之间可以连出一条线(天知道在哪一维空间里就是一条直线叻?),这既符合直觉,也是简单明确的事实。
从数学逻辑的角度,要证明一个定理就要证明导出这个定理的定理,进而要证明导出导出这个定理的定理的定理.......这样一直往回走,我们需要证明一个定理串,如果这个过程无限回溯显然是不可接受的,必须要有一些“东西”作为这个定理串的源头,回溯的过程终止与这个源头,这个源头我们就说它是“公理”,当然如果这个源头与某条已知公理违背,则这一串就都是假命题了。
扯远了,回到公理上来,形式主义数学家如希尔伯特,就通过建立形式化公理体系,把数学带到了一个更加严密的世界中来了。每一套公理体系中的公理,必须互相独立,且相容,否则就有矛盾了。所以一个公理背后是一套公理体系,这样就构成了一套数学的基础。
数学的图景也没有那么统一的,一套非偶的公理体系,就一个非偶几何空间(当然希尔伯特老先生的几何公理体系吧几何学统一了.....可不可以不要这么强大嘛~~);一个连续统假设,分出两个数学的世界,
总之公理,公理体系,就是数学的的底桩。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式