数学题:已知COS(π/4-a)=3/5 sin(5π/4 b)=-12/13,a∈(π/4,3π/4),b∈(-10,π/4),求sin(a b)
展开全部
a∈(π/4,3π/4)
π/4-a∈(-π,0)
sin(π/4-a)<0
sin²(π/4-a)+²cos²(π/4-a)=1
所以sin(π/4-a)=-4/5
sin(5π/4+b)
=sin(π+π/4+b)
=-sin(π/4+b)=-12/13
sin(π/4+b)=12/13
b∈(0,π/4)
π/4+b∈(π/4,π/2)
cos(π/4+b)>0
sin²(π/4+b)+cos²(π/4+b)=1
cos(π/4+b)=5/13
sin(a+b)=sin[(π/4+b)-(π/4-a)]
=sin(π/4+b)cos(π/4-a)-cos(π/4+b)sin(π/4-a)
=16/65
π/4-a∈(-π,0)
sin(π/4-a)<0
sin²(π/4-a)+²cos²(π/4-a)=1
所以sin(π/4-a)=-4/5
sin(5π/4+b)
=sin(π+π/4+b)
=-sin(π/4+b)=-12/13
sin(π/4+b)=12/13
b∈(0,π/4)
π/4+b∈(π/4,π/2)
cos(π/4+b)>0
sin²(π/4+b)+cos²(π/4+b)=1
cos(π/4+b)=5/13
sin(a+b)=sin[(π/4+b)-(π/4-a)]
=sin(π/4+b)cos(π/4-a)-cos(π/4+b)sin(π/4-a)
=16/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询