物理学的发展史

字数不要太多快一点... 字数不要太多 快一点 展开
金果6333
2018-12-21 · TA获得超过116万个赞
知道小有建树答主
回答量:159
采纳率:97%
帮助的人:7.4万
展开全部

近代意义的物理学诞生于欧洲15—17世纪。人们一般将欧洲历史 作为物理学史的社会背景。从远古到公元5世纪属古代史时期;5—13世纪为中世纪时期;14—16世纪为文艺复兴运动时期;16—17世纪为科学革命时期,以N.哥白尼、伽利略、牛顿为代表的近代科学在此时期产生。

从此之后,科学随各个世纪的更替而发展。近半个世纪,人们按照物理学史特点,将其发展大致分期如下:从远古到中世纪属古代时期。从文艺复兴到19世纪,是经典物理学时期。牛顿力学在此时期发展到顶峰,其 时空观、物质观和因果关系影响了光、声、热、电磁的各学科。

甚而影响到物理学以外的自然科学和社会科学。随着20世纪的到来,量子论和相对论相继出现;新的时空观、概率论和不确定度关系等在宇观和微观领域取代牛顿力学的相关概念,人们称此时期为近代物理学时期。

扩展资料:

伽利略·伽利雷(1564~1642年)人类现代物理学的创始人,奠定了人类现代物理科学的发展基础。1900~1926年 建立了量子力学。1926年 建立了费米狄拉克统计。1927年 建立了布洛赫波的理论。1928年 索末菲提出能带的猜想。1929年 派尔斯提出禁带、空穴的概念。

同年贝特提出了费米面的概念。1947年贝尔实验室的巴丁、布拉顿和肖克莱发明了晶体管,标志着信息时代的开始。1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子。1958年杰克.基尔比发明了集成电路。20世纪70年代出现了大规模集成电路。

发展前景:

应用物理学专业的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开 发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。

应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理 论和实践于一体,并与多门学科相互渗透。应用物理学专业的学生如具有扎实的物理理论的功底和应用方面的经验,能够在很多工程技术领域成为专家。我国每年培养本科应用物理专业人才约12000人。

和该专业存在交叉的专业包括物理专业,工程物理专业,半导体和材料专业等。人才需求方面,我国对应用物理专业的人才需求仍旧是供不应求。

参考资料来源:百度百科-物理学史

教育小百科达人
2019-01-27 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

从远古到公元5世纪属古代史时期;5—13世纪为中世纪时期;14—16世纪为文艺复兴运动时期;16—17世纪为科学革命时期,以N.哥白尼、伽利略、牛顿为代表的近代科学在此时期产生,从此之后,科学随各个世纪的更替而发展。近半个世纪,人们按照物理学史特点,将其发展大致分期如下:

①从远古到中世纪属古代时期。

②从文艺复兴到19世纪,是经典物理学时期。牛顿力学在此时期发展到顶峰,其时空观、物质观和因果关系影响了光、声、热、电磁的各学科,甚而影响到物理学以外的自然科学和社会科学。

③随着20世纪的到来,量子论和相对论相继出现;新的时空观、概率论和不确定度关系等在宇观和微观领域取代牛顿力学的相关概念,人们称此时期为近代物理学时期。

扩展资料:

物理学来源于古希腊理性唯物思想。早期的哲学家提出了许多范围广泛的问题,诸如宇宙秩序的来源、世界多样性和各类变种的起源、如何说明物质和形式、运动和变化之间的关系等。

尤其是,以留基波、德谟克利特为代表,后又被伊壁鸠鲁和卢克莱修发展的原子论,以及以爱利亚的芝诺为代表的斯多阿学派主张自然界连续性的观点,对自然界的结构和运动、变化等作出各自的说明。原子论曾对从18世纪起的化学和物理学起着相当大的影响。

经典物理学形成之初,磨镜与制镜工艺对物理学与天文学都有过帮助和促进。早先发明的眼镜以及在1600年左右突然问世的望远镜、显微镜,为伽利略等物理学家观测天体带来方便,也促使菲涅耳、笛卡尔、牛顿等一大批光学家作出几何光学的研究。

后者的成就又促成反射望远镜、折射望远镜和消色差折射望远镜在17—18世纪纷纷问世。各种望远镜的进步又推动物理学的发展,如用它观察木卫蚀、发现光行差等。当牛顿建立起经典力学大厦时,现代一切机械、土木建筑、交通运输、航空航天等工程技术的理论基础也得到初步确立。

18世纪60年代开始的工业革命,以蒸汽机的广泛使用为标志。起初,蒸汽机的热机效率仅为5%左右,为提高蒸汽机的效率,一大批物理学家进行热力学研究。J.瓦特曾根据J.布莱克的“潜热”理论在技术因素上(加入冷凝器)改进蒸汽机。

但是,当时尚未有人认识到汽缸的热仅仅部分地转化为机械功。此后,卡诺建立了热功转换的循环原理,从理论上为热机效率的提高指明了方向,也因此在19世纪下半叶出现了N.奥托和R.狄塞尔的内燃机。

除了物理学与技术之关系外,在科学发展史上,物理学与邻近的天文学、化学和矿物学是密切相关的,而物理学与数学的联系更为密切。物理学的概念、理论和方法,也帮助其他学科的建立与发展,如气象学、地球科学、生物学等。物理学与哲学的关系也十分特别。

参考资料来源:百度百科——物理学史

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-07-26
展开全部
物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这—目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。

经典力学
经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动
自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。
牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。
经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。
在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。
早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。
械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。

热学、热力学和经典统计力学

热学是研究热的产生和传导,研究物质处于热状态下的性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度和热量),并在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。
物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的,因此热力学第一定律就是能量守恒与转换定律的一种表现。
在卡诺研究结果的基础上,克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体,不可能自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。
深入研究热现象的本质,就产生了统计力学。统计力学应用数学中统计分析的方法,研究大量粒子的平均行为。统计力学根据物质的微观组成和相互作用,研究由大量粒子组成的宏观物体的性质和行为的统计规律,是理论物理的一个重要分支。
非平衡统计力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包含有大量粒子的宏观物理系统来说,系统处于无序状态的几率超过了处于有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态,在热力学中,这就相应于熵的增加。
处于平衡状态附近的非平衡系统的主要趋向是向平衡状态过渡。平衡态附近的主要非平衡过程是弛豫、输运和涨落,这方面的理论逐步发展,已趋于成熟。近20~30年来人们对于远离平衡态的物理系统,如耗散结构等进行了广泛的研究,取得了很大的进展,但还有很多问题等待解决。
在一定时期内,人们对客观世界的认识总是有局限性的,认识到的只是相对的真理,经典力学和以经典力学为基础的经典统计力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典统计力学也发展成为以量子力学为基础的量子统计力学。

经典电磁学、经典电动力学
经典电磁学是研究宏观电磁现象和客观物体的电磁性质的学科。人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。
在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
现在人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。
由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦茨力。描述电磁场基本规律的麦克斯韦方程组和洛伦茨力就构成了经典电动力学的基础。
事实上,发电机无非是利用电动力学的规律,将机械能转化为电磁能:电动机无非是利用电动力学的规律将电磁能转化为机械能。电报、电话、无线电、电灯也无一不是经典电磁学和经典电动力学发展的产物。经典电动力学对生产力的发展起着重要的推动作用,从而对社会产生普遍而重要的影响。
光学和电磁波
光学研究光的性质及其和物质的各种相互作用,光是电磁波。虽然可见光的波长范围在电磁波中只占很窄的一个波段,但是早在人们认识到光是电磁波以前,人们就对光进行了研究。
17世纪对光的本质提出了两种假说:一种假说认为光是由许多微粒组成的;另一种假说认为光是一种波动。19世纪在实验上确定了光有波的独具的干涉现象,以后的实验证明光是电磁波。20世纪初又发现光具有粒子性,人们在深入入研究微观世界后,才认识到光具有波粒二象性。
光可以为物质所发射、吸收、反射、折射和衍射。当所研究的物体或空间的大小远大于光波的波长时,光可以当作沿直线进行的光线来处理;但当研究深入到现象细节,其空间范围和光波波长差不多大小的时候,就必须要考虑光的波动性。而研究光和微观粒子的相互作用时,还要考虑光的粒子性。
光学方法是研究大至天体、小至微生物以至分子、原子结构的非常有效的方法。利用光的干涉效应可以进行非常精密的测量。物质所放出来的光携带着关于物质内部结构的重要信息,例如:原子所放出来原子光谱的就和原子结构密切相关。
近年来利用受激辐射机制所产生的激光能够达到非常大的功率,且光束的张角非常小,其电场强度甚至可以超过原子内部的电场强度。利用激光已经开辟了非线性光学等重要研究方向,激光在工业技术和医学中已经有了很多重要的应用。
现在用人工方法产生的电磁波的波长,长的已经达几千米,短的不到一百万亿分之一厘米,覆盖了近20个数量级的波段。电磁波传播的速度大,波段又如此宽广已成为传递信息的非常有力的工具。
在经典电磁学的建立与发展过程中,形成了电磁场的概念。在物理学其后的发展中,场成了非常基本、非常普遍的概念。在现代物理学中,场的概念已经远远超出了电磁学的范围,成为物质的一种基本的、普遍的存在形式。
狭义相对论和相对论力学
在经典力学取得很大成功以后,人们习惯于将一切现象都归结为由机械运动所引起的。在电磁场概念提出以后,人们假设存在一种名叫“以太”的媒质,它弥漫于整个宇宙,渗透到所有的物体中,绝对静止不动,没有质量,对物体的运动不产生任何阻力,也不受万有引力的影响。可以将以太作为一个绝对静止的参照系,因此相对于以太作匀速运动的参照系都是惯性参照系。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-07-26
展开全部
● 热机的发明和使用,提供了第一种模式:
  ● 电气化的进程,提供了第二种模式:核能的利用激光器的产生层析成像技术(CT)超导电子技术技术—— 物理—— 技术物理—— 技术—— 物理粒子散射实验X 射线的发现受激辐射理论低温超导微观理论电子计算机的诞生
  ● 1947年 贝尔实验室的巴丁,布拉顿和肖克来发明了晶体管,标志着信息时代的开始
  ● 1962年 发明了集成电路
  ● 70年代后期 出现了大规模集成电路
  ● 1925 26年 建立了量子力学
  ● 1926年 建立了费米 狄拉克统计
  ● 1927年 建立了布洛赫波的理论
  ● 1928年 索末菲提出能带的猜想
  ● 1929年 派尔斯提出禁带,空穴的概念同年贝特提出了费米面的概念
  ● 1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子晶体晶体管的发明大规模集成电路电子计算机信息技术与工程
  ● 几乎所有的重大新(高)技术领域的创立,事先都在物理学中经过长期的酝酿.
  ● 当今物理学和科学技术的关系两种模式并存,相互交叉,相互促进“没有昨日的基础科学就没有今日的技术革命”. —— 李政道量子力学能带理论人工设计材料五. 物理学的方法和科学态度提出命题推测答案理论预言实验验证修改理论现代物理学是一门理论和实验高度结合的精确科学从新的观测事实或实验事实中提炼出来,或从已有原理中推演出来建立模型;用已知原理对现象作定性解释,进行逻辑推理和数学演算新的理论必须提出能够为实验所证伪的预言一切物理理论最终都要以观测或实验事实为准则当一个理论与实验事实不符时,它就面临着被修改或被推翻 六. 怎样学习物理学著名物理学家费曼说:科学是一种方法.它教导人们:一些事物是怎样被了解的,什么事情是已知的,现在了解到了什么程度,如何对待疑问和不确定性,证据服从什么法则;如何思考事物,做出判断,如何区别真伪和表面现象 .著名物理学家爱因斯坦说:发展独立思考和独立判断地一般能力,应当始终放在首位,而不应当把专业知识放在首位.如果一个人掌握了他的学科的基础理论,并且学会了独立思考和工作,他必定会找到自己的道路,而且比起那种主要以获得细节知识为其培训内容的人来,他一定会更好地适应进步和变化 .
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
甫乐游0Gw
2020-08-16
知道答主
回答量:2
采纳率:0%
帮助的人:1483
展开全部

一分钟看懂物理学的历史

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式