如图,△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且∠B=2∠A,求证:b^2=a^2+ac
展开全部
A:B=1:2
a^2+ac=b^2
sinA^2+sinAsinC=sinB^2
sinA^2+sinAsin(A+B)=sinB^2
sinA^2+sinA[sinAcosB+sinBcosA)=sinB^2
sinA^2(1+cosB)+1/2sin2AsinB=sinB^2
sinA^2(2-2sinA^2)+1/2sinBsinB=sinB^2
2sinA^2sinB^2+)+1/2sinBsinB=sinB^2=sinB^2
1/2sinBsinB+1/2sinBsinB=sinB^2
所以a^2+ac=b^2
在三角函数中a:b:c=sinA:sinB:sinC
a^2+ac=b^2
sinA^2+sinAsinC=sinB^2
sinA^2+sinAsin(A+B)=sinB^2
sinA^2+sinA[sinAcosB+sinBcosA)=sinB^2
sinA^2(1+cosB)+1/2sin2AsinB=sinB^2
sinA^2(2-2sinA^2)+1/2sinBsinB=sinB^2
2sinA^2sinB^2+)+1/2sinBsinB=sinB^2=sinB^2
1/2sinBsinB+1/2sinBsinB=sinB^2
所以a^2+ac=b^2
在三角函数中a:b:c=sinA:sinB:sinC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a^2=b^2+c^2-2bc cosA 我记得是有这个公式,这是任意三角形,边角关系的公式,
针对每一条边在左边都有一个公式
针对每一条边在左边都有一个公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询