已知双曲线X^2-Y^2=1,椭圆与该双曲线共焦点,且经过点(2,3),求(1)椭圆的左右顶点分别是A,B,右焦点 15

F,直线L为椭圆的有准线,N为L的一动点,且在X轴的上方,直线AN与椭圆交与点M.若AM=MN,求角AMB的余弦值设过A,F,N三点的圆与Y轴交于P,Q两点,当线段PQ的... F,直线L为椭圆的有准线,N为L的一动点,且在X轴的上方,直线AN与椭圆交与点M. 若AM=MN,求角AMB的余弦值 设过A,F,N三点的圆与Y轴交于P,Q两点,当线段PQ的中点为(0,9)时,求这个圆
应该是X^2-y^2/3=1
展开
 我来答
hbc3193034
2013-07-27 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
(1)双曲线X^2-Y^2/3=1的焦点是(土2,0),
设所求椭圆方程是x^2/(b^2+4)+y^2/b^2=1,
它过点(2,3),
∴4/(b^2+4)+9/b^2=1,
4b^2+9b^2+36=b^4+4b^2,
b^4-9b^2-36=0,b^2>0,
∴b^2=12,
∴椭圆方程是x^2/16+y^2/12=1.其左右顶点分别是A(-4,0),B(4,0),右焦点F(2,0),N(8,n),
AN:y=n(x+4)/12与椭圆交于M(4(108-n^2)/(108+n^2),72n/(108+n^2)),
AM=MN,
[4(108-n^2)/(108+n^2)+4]^2+[72n/(108+n^2)]^2
=[4(108-n^2)/(108+n^2)-8]^2+[72n/(108+n^2)-n]^2,
∴12[8(108-n^2)/(108+n^2)-4]+n[144n/(108+n^2)-n]=0,
48(108-3n^2)+n^2(36-n^2)=0,
n^4+108n^2-48*108=0,
∴n^2=36,n=土6.M(2,土3),
当M(2,3)时MA=(-6,-3),MB=(2,-3),|MA|=3√5,|MB|=√13,MA*MB=-3,
cosAMB=-√65/65,
当M(2,-3)时cosAMB=-√65/65.
(2)?
更多追问追答
追问
圆的方程的、、
追答
过A,F,N三点的圆已定,怎能使线段PQ的中点为(0,9)?
请检查题目
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式