关于NRF24L01通信的问题
最近在弄2401,弄了三四天了,还没弄出来,现在的主要问题是接收不到数据,发送部分感觉应该是没问题了,因为读出来STATUS和FIFO_STATUS的值是00X2E和0X...
最近在弄2401,弄了三四天了,还没弄出来,现在的主要问题是接收不到数据,发送部分感觉应该是没问题了,因为读出来STATUS和FIFO_STATUS的值是00X2E和0X11,这样应该是发送成功了吧,但是在接收端读出来的值分别是0x0E和0X11,这样根本就没有接收到数据,接受缓存是空的,问题出在什么地方呢?有没遇到过同样的问题没?去请高手指点一下
展开
2个回答
展开全部
你这样说没有说明白,我这里附一份调试过的代码,用ST的stm32芯片实现,上面的说明应该是很清楚了,你照猫画虎基本上能成功的,试试吧。
额,好吧,后面的内容超出字数要求了,加不上去,你可以用其他方法问我要剩余的代码,而且这里有部分注释因为字数的原因也被删除了。
--------------------------------------------------------
**文 件 名: nrf24l01.c
**创 建 人: pylon_zlq
**版 本 : v0.1
**最后修改日期: 2011年10月29日
**描 述: 1. 2.4G无线模块驱动程序
** 2. 24L01的指令分类规律读写寄存器为一大类,其他操作为一大类,如下:
** a. 读写寄存器是高三位来区分, 0b000X XXXX (read), 0b001X XXXX(write),其中 X XXXX(低5位)是
** 寄存器地址
** b. 读接收缓存指令: 0x61(用高三位来区别其他指令, 0b011)
** c. 写发送缓存指令: 0xA0(同上)
** d. 清TX FIFO: 0xE1(同上)
** e. 清RX FIFO: 0xE2(同上)
** f. 重使用上包数据: 0xE3(同上)
** g. NOP,空操作: 0xFF(同上)
** 3. 由于收发FIFO最多有32字节,因此本模块仅使用32字节长度的数据收发
** 4. 由于通讯地址最多有5字节,因此本模块仅使用5字节的通道地址(收发方一致)
** 5. 从实际使用情况来看,读写接口分为这么几种:读写单字节的寄存器,读写多字节的通讯地址(也是寄存器的一种),
** 读写通讯缓存,总共6类读写接口
#include "includes.h"
#define NRF24L01_CE_0() {GPIO_SetBit_0(GPIOA, E_PIN_3);}
#define NRF24L01_CE_1() {GPIO_SetBit_1(GPIOA, E_PIN_3);}
#define NRF24L01_SCK_0() {GPIO_SetBit_0(GPIOA, E_PIN_5);}
#define NRF24L01_SCK_1() {GPIO_SetBit_1(GPIOA, E_PIN_5);}
#define NRF24L01_MOSI_0() {GPIO_SetBit_0(GPIOA, E_PIN_7);}
#define NRF24L01_MOSI_1() {GPIO_SetBit_1(GPIOA, E_PIN_7);}
#define NRF24L01_CS_0() {GPIO_SetBit_0(GPIOB, E_PIN_4);}
#define NRF24L01_CS_1() {GPIO_SetBit_1(GPIOB, E_PIN_4);}
#define NRF24L01_MISO_STT() (GPIO_GetLevel(GPIOA, E_PIN_6))
#define NRF24_RX_TX_LEN 32 //本模块仅使用32字节长度的通讯
#define NRF24_ADDR_LEN 5 //本模块仅使用5字节长度的通讯地址(收发方一致)
#define NFR24_RX_CH_1 0 //RX 1通道
#define NFR24_RX_CH_2 1 //RX 2通道
#define NFR24_RX_CH_3 2 //RX 3通道
#define NFR24_RX_CH_4 3 //RX 4通道
#define NFR24_RX_CH_5 4 //RX 5通道
#define NFR24_RX_CH_6 5 //RX 6通道
#define NFR24_TX_CH 6 //TX 通道
//NRF24L01寄存器操作命令
#define NRF24_READ_REG_CMD 0x00 //读配置寄存器,低5位为寄存器地址
#define NRF24_WRITE_REG_CMD 0x20 //写配置寄存器,低5位为寄存器地址
#define NRF24_RD_RX_PLOAD 0x61 //读RX有效数据,1~32字节
#define NRF24_WR_TX_PLOAD 0xA0 //写TX有效数据,1~32字节
#define NRF24_FLUSH_TX 0xE1 //清除TX FIFO寄存器.发射模式下用
#define NRF24_FLUSH_RX 0xE2 //清除RX FIFO寄存器.接收模式下用
#define NRF24_REUSE_TX_PL 0xE3 //重新使用上一包数据,CE为高,数据包被不断发送.
#define NRF24_NOP 0xFF //空操作,可以用来读状态寄存器
//SPI(NRF24L01)寄存器地址
#define NRF24_CONFIG 0x00 //配置寄存器地址;bit0:1接收模式,0发射模式;bit1:电选择;bit2:CRC模式;bit3:CRC使能;
//bit4:中断MAX_RT(达到最大重发次数中断)使能;bit5:中断TX_DS使能;bit6:中断RX_DR使能
#define NRF24_EN_AA 0x01 //使能自动应答功能 bit0~5,对应通道0~5
#define NRF24_EN_RXADDR 0x02 //接收地址允许,bit0~5,对应通道0~5
#define NRF24_SETUP_AW 0x03 //设置地址宽度(所有数据通道):bit1,0:00,3字节;01,4字节;02,5字节;
#define NRF24_SETUP_RETR 0x04 //建立自动重发;bit3:0,自动重发计数器;bit7:4,自动重发延时 250*x+86us
#define NRF24_RF_CH 0x05 //RF通道,bit6:0,工作通道频率;
#define NRF24_RF_SETUP 0x06 //RF寄存器;bit3:传输速率(0:1Mbps,1:2Mbps);bit2:1,发射功率;bit0:低噪声放大器增益
#define NRF24_STATUS 0x07 //状态寄存器;bit0:TX FIFO满标志;bit3:1,接收数据通道号(最大:6);bit4,达到最多次重发
//bit5:数据发送完成中断;bit6:接收数据中断;
#define NRF24_MAX_TX 0x10 //达到最大发送次数中断
#define NRF24_TX_OK 0x20 //TX发送完成中断
#define NRF24_RX_OK 0x40 //接收到数据中断
#define NRF24_OBSERVE_TX 0x08 //发送检测寄存器,bit7:4,数据包丢失计数器;bit3:0,重发计数器
#define NRF24_CD 0x09 //载波检测寄存器,bit0,载波检测;
#define NRF24_RX_ADDR_P0 0x0A //数据通道0接收地址,最大长度5个字节,低字节在前
#define NRF24_RX_ADDR_P1 0x0B //数据通道1接收地址,最大长度5个字节,低字节在前
#define NRF24_RX_ADDR_P2 0x0C //数据通道2接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define NRF24_RX_ADDR_P3 0x0D //数据通道3接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define NRF24_RX_ADDR_P4 0x0E //数据通道4接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define NRF24_RX_ADDR_P5 0x0F //数据通道5接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define NRF24_TX_ADDR 0x10 //发送地址(低字节在前),ShockBurstTM模式下,RX_ADDR_P0与此地址相等
#define NRF24_RX_PW_P0 0x11 //接收数据通道0有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P1 0x12 //接收数据通道1有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P2 0x13 //接收数据通道2有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P3 0x14 //接收数据通道3有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P4 0x15 //接收数据通道4有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P5 0x16 //接收数据通道5有效数据宽度(1~32字节),设置为0则非法
#define NRF24_FIFO_STATUS 0x17 //FIFO状态寄存器;bit0,RX FIFO寄存器空标志;bit1,RX FIFO满标志;bit2,3,保留
//bit4,TX FIFO空标志;bit5,TX FIFO满标志;bit6,1,循环发送上一数据包.0,不循环;
static const uchar gCuc_TXAddr[NRF24_ADDR_LEN]={0x34,0x43,0x10,0x10,0x01}; //发送地址
static const uchar gCuc_RXAddr[NRF24_ADDR_LEN]={0x34,0x43,0x10,0x10,0x01}; //发送地址
uchar guc_TXRX_Stt;
/*********************************************************************************************************
**函数名称: void NRF24L01Initial(void)
**输入: none
**输出: none
**说明: PA3---WIRELESS_CE, PA5---SCK, PA6---MISO, PB4---WIRELESS_CS, PA7---MOSI, PA2---WIRELESS_INT
**/
void NRF24L01Initial(void)
{
//1.配置io口线时钟
RCC_APB2ENR |= IOPAEN+IOPBEN; //port a, port b,
RCC_APB2RSTR &= ~(IOPAEN+IOPBEN); //port a, port b,
//2.配置io口,SCK,MOSI,MISO三根线交由spi外设自动控制,其初始化也交由spi驱动程序完成
//WIRELESS_CE, output
SetOutput(GPIOA, E_PIN_3, E_OUT_PP, E_OUT_SPD_50M);
//WIRELESS_INT, pull up input
SetInput(GPIOA, E_PIN_2, INPUT_TYPE_FLOAT, E_IN_PULL_UP);
//WIRELESS_CS, push-pull output
SetOutput(GPIOB, E_PIN_4, E_OUT_PP, E_OUT_SPD_50M);
//这个是防止flash片在cs变低可能造成的MISO线电平冲突的问题
SetOutput(GPIOB, E_PIN_6, E_OUT_PP, E_OUT_SPD_50M);
GPIO_SetBit_1(GPIOB, E_PIN_6);
//3. enable rnf24l01, unselect rnf24l01
NRF24L01_CE_0();
NRF24L01_CS_1();
guc_TXRX_Stt = 0;
}
额,好吧,后面的内容超出字数要求了,加不上去,你可以用其他方法问我要剩余的代码,而且这里有部分注释因为字数的原因也被删除了。
--------------------------------------------------------
**文 件 名: nrf24l01.c
**创 建 人: pylon_zlq
**版 本 : v0.1
**最后修改日期: 2011年10月29日
**描 述: 1. 2.4G无线模块驱动程序
** 2. 24L01的指令分类规律读写寄存器为一大类,其他操作为一大类,如下:
** a. 读写寄存器是高三位来区分, 0b000X XXXX (read), 0b001X XXXX(write),其中 X XXXX(低5位)是
** 寄存器地址
** b. 读接收缓存指令: 0x61(用高三位来区别其他指令, 0b011)
** c. 写发送缓存指令: 0xA0(同上)
** d. 清TX FIFO: 0xE1(同上)
** e. 清RX FIFO: 0xE2(同上)
** f. 重使用上包数据: 0xE3(同上)
** g. NOP,空操作: 0xFF(同上)
** 3. 由于收发FIFO最多有32字节,因此本模块仅使用32字节长度的数据收发
** 4. 由于通讯地址最多有5字节,因此本模块仅使用5字节的通道地址(收发方一致)
** 5. 从实际使用情况来看,读写接口分为这么几种:读写单字节的寄存器,读写多字节的通讯地址(也是寄存器的一种),
** 读写通讯缓存,总共6类读写接口
#include "includes.h"
#define NRF24L01_CE_0() {GPIO_SetBit_0(GPIOA, E_PIN_3);}
#define NRF24L01_CE_1() {GPIO_SetBit_1(GPIOA, E_PIN_3);}
#define NRF24L01_SCK_0() {GPIO_SetBit_0(GPIOA, E_PIN_5);}
#define NRF24L01_SCK_1() {GPIO_SetBit_1(GPIOA, E_PIN_5);}
#define NRF24L01_MOSI_0() {GPIO_SetBit_0(GPIOA, E_PIN_7);}
#define NRF24L01_MOSI_1() {GPIO_SetBit_1(GPIOA, E_PIN_7);}
#define NRF24L01_CS_0() {GPIO_SetBit_0(GPIOB, E_PIN_4);}
#define NRF24L01_CS_1() {GPIO_SetBit_1(GPIOB, E_PIN_4);}
#define NRF24L01_MISO_STT() (GPIO_GetLevel(GPIOA, E_PIN_6))
#define NRF24_RX_TX_LEN 32 //本模块仅使用32字节长度的通讯
#define NRF24_ADDR_LEN 5 //本模块仅使用5字节长度的通讯地址(收发方一致)
#define NFR24_RX_CH_1 0 //RX 1通道
#define NFR24_RX_CH_2 1 //RX 2通道
#define NFR24_RX_CH_3 2 //RX 3通道
#define NFR24_RX_CH_4 3 //RX 4通道
#define NFR24_RX_CH_5 4 //RX 5通道
#define NFR24_RX_CH_6 5 //RX 6通道
#define NFR24_TX_CH 6 //TX 通道
//NRF24L01寄存器操作命令
#define NRF24_READ_REG_CMD 0x00 //读配置寄存器,低5位为寄存器地址
#define NRF24_WRITE_REG_CMD 0x20 //写配置寄存器,低5位为寄存器地址
#define NRF24_RD_RX_PLOAD 0x61 //读RX有效数据,1~32字节
#define NRF24_WR_TX_PLOAD 0xA0 //写TX有效数据,1~32字节
#define NRF24_FLUSH_TX 0xE1 //清除TX FIFO寄存器.发射模式下用
#define NRF24_FLUSH_RX 0xE2 //清除RX FIFO寄存器.接收模式下用
#define NRF24_REUSE_TX_PL 0xE3 //重新使用上一包数据,CE为高,数据包被不断发送.
#define NRF24_NOP 0xFF //空操作,可以用来读状态寄存器
//SPI(NRF24L01)寄存器地址
#define NRF24_CONFIG 0x00 //配置寄存器地址;bit0:1接收模式,0发射模式;bit1:电选择;bit2:CRC模式;bit3:CRC使能;
//bit4:中断MAX_RT(达到最大重发次数中断)使能;bit5:中断TX_DS使能;bit6:中断RX_DR使能
#define NRF24_EN_AA 0x01 //使能自动应答功能 bit0~5,对应通道0~5
#define NRF24_EN_RXADDR 0x02 //接收地址允许,bit0~5,对应通道0~5
#define NRF24_SETUP_AW 0x03 //设置地址宽度(所有数据通道):bit1,0:00,3字节;01,4字节;02,5字节;
#define NRF24_SETUP_RETR 0x04 //建立自动重发;bit3:0,自动重发计数器;bit7:4,自动重发延时 250*x+86us
#define NRF24_RF_CH 0x05 //RF通道,bit6:0,工作通道频率;
#define NRF24_RF_SETUP 0x06 //RF寄存器;bit3:传输速率(0:1Mbps,1:2Mbps);bit2:1,发射功率;bit0:低噪声放大器增益
#define NRF24_STATUS 0x07 //状态寄存器;bit0:TX FIFO满标志;bit3:1,接收数据通道号(最大:6);bit4,达到最多次重发
//bit5:数据发送完成中断;bit6:接收数据中断;
#define NRF24_MAX_TX 0x10 //达到最大发送次数中断
#define NRF24_TX_OK 0x20 //TX发送完成中断
#define NRF24_RX_OK 0x40 //接收到数据中断
#define NRF24_OBSERVE_TX 0x08 //发送检测寄存器,bit7:4,数据包丢失计数器;bit3:0,重发计数器
#define NRF24_CD 0x09 //载波检测寄存器,bit0,载波检测;
#define NRF24_RX_ADDR_P0 0x0A //数据通道0接收地址,最大长度5个字节,低字节在前
#define NRF24_RX_ADDR_P1 0x0B //数据通道1接收地址,最大长度5个字节,低字节在前
#define NRF24_RX_ADDR_P2 0x0C //数据通道2接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define NRF24_RX_ADDR_P3 0x0D //数据通道3接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define NRF24_RX_ADDR_P4 0x0E //数据通道4接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define NRF24_RX_ADDR_P5 0x0F //数据通道5接收地址,最低字节可设置,高字节,必须同RX_ADDR_P1[39:8]相等;
#define NRF24_TX_ADDR 0x10 //发送地址(低字节在前),ShockBurstTM模式下,RX_ADDR_P0与此地址相等
#define NRF24_RX_PW_P0 0x11 //接收数据通道0有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P1 0x12 //接收数据通道1有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P2 0x13 //接收数据通道2有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P3 0x14 //接收数据通道3有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P4 0x15 //接收数据通道4有效数据宽度(1~32字节),设置为0则非法
#define NRF24_RX_PW_P5 0x16 //接收数据通道5有效数据宽度(1~32字节),设置为0则非法
#define NRF24_FIFO_STATUS 0x17 //FIFO状态寄存器;bit0,RX FIFO寄存器空标志;bit1,RX FIFO满标志;bit2,3,保留
//bit4,TX FIFO空标志;bit5,TX FIFO满标志;bit6,1,循环发送上一数据包.0,不循环;
static const uchar gCuc_TXAddr[NRF24_ADDR_LEN]={0x34,0x43,0x10,0x10,0x01}; //发送地址
static const uchar gCuc_RXAddr[NRF24_ADDR_LEN]={0x34,0x43,0x10,0x10,0x01}; //发送地址
uchar guc_TXRX_Stt;
/*********************************************************************************************************
**函数名称: void NRF24L01Initial(void)
**输入: none
**输出: none
**说明: PA3---WIRELESS_CE, PA5---SCK, PA6---MISO, PB4---WIRELESS_CS, PA7---MOSI, PA2---WIRELESS_INT
**/
void NRF24L01Initial(void)
{
//1.配置io口线时钟
RCC_APB2ENR |= IOPAEN+IOPBEN; //port a, port b,
RCC_APB2RSTR &= ~(IOPAEN+IOPBEN); //port a, port b,
//2.配置io口,SCK,MOSI,MISO三根线交由spi外设自动控制,其初始化也交由spi驱动程序完成
//WIRELESS_CE, output
SetOutput(GPIOA, E_PIN_3, E_OUT_PP, E_OUT_SPD_50M);
//WIRELESS_INT, pull up input
SetInput(GPIOA, E_PIN_2, INPUT_TYPE_FLOAT, E_IN_PULL_UP);
//WIRELESS_CS, push-pull output
SetOutput(GPIOB, E_PIN_4, E_OUT_PP, E_OUT_SPD_50M);
//这个是防止flash片在cs变低可能造成的MISO线电平冲突的问题
SetOutput(GPIOB, E_PIN_6, E_OUT_PP, E_OUT_SPD_50M);
GPIO_SetBit_1(GPIOB, E_PIN_6);
//3. enable rnf24l01, unselect rnf24l01
NRF24L01_CE_0();
NRF24L01_CS_1();
guc_TXRX_Stt = 0;
}
程经理
2024-10-11 广告
2024-10-11 广告
90年代,我国工业标识类行业发展迅猛,标识技术也得到了不断发展和创新,但国产产品在线号机、标牌机方面还处于空白阶段,标签机也落后于国外知名品牌。顺应时代潮流,硕方品牌在2005年于北京创立,以自主研发、产品创新作为企业发展的内在动力,专注于...
点击进入详情页
本回答由程经理提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询