3个回答
展开全部
∫[(1+x^4)/(1+x^6)]dx
=(1/3)∫[(3+3x^4)/(1+x^6)]dx
=(1/3)∫{[(2x^4-2x^2+2)+(x^4+2x^2+1)]/[(x^2+1)(x^4-x^2+1)]}dx
=(2/3)∫[1/(x^2+1)]dx+(1/3)∫{(x^2+1)^2/[(x^2+1)(x^4-x^2+1)]}dx
=(2/3)arctanx+(1/3)∫[(x^2+1)/(x^4-x^2+1)]dx
=(2/3)arctanx+(1/3)∫{(x^2+1)/[x^2+(x^2-1)^2]}dx
=(2/3)arctanx+(1/3)∫{[(x^2+1)/(x^2-1)^2]/[1+x^2/(x^2-1)^2]}dx
=(2/3)arctanx-(1/3)∫{1/[1+x^2/(x^2-1)^2]}d[x/(x^2-1)]
=(2/3)arctanx-(1/3)arctan[x/(x^2-1)]+C。
=(1/3)∫[(3+3x^4)/(1+x^6)]dx
=(1/3)∫{[(2x^4-2x^2+2)+(x^4+2x^2+1)]/[(x^2+1)(x^4-x^2+1)]}dx
=(2/3)∫[1/(x^2+1)]dx+(1/3)∫{(x^2+1)^2/[(x^2+1)(x^4-x^2+1)]}dx
=(2/3)arctanx+(1/3)∫[(x^2+1)/(x^4-x^2+1)]dx
=(2/3)arctanx+(1/3)∫{(x^2+1)/[x^2+(x^2-1)^2]}dx
=(2/3)arctanx+(1/3)∫{[(x^2+1)/(x^2-1)^2]/[1+x^2/(x^2-1)^2]}dx
=(2/3)arctanx-(1/3)∫{1/[1+x^2/(x^2-1)^2]}d[x/(x^2-1)]
=(2/3)arctanx-(1/3)arctan[x/(x^2-1)]+C。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询