一道高中数学题,越详细越好
设函数fn(X)=x^n+bx+c(n属于N+,b,c属于r)(1)设n>=2,b=1c=-1,证明fn(x)在区间(1/2,1)内存在唯一的零点(2)设n为偶数,f(-...
设函数fn(X)=x^n+bx+c(n属于N+,b,c属于r)
(1)设n>=2,b=1c=-1,证明fn(x)在区间(1/2,1)内存在唯一的零点
(2)设n为偶数,f(-1)的绝对值小于等于1,f(1)的绝对值小于等于1,求b+3c的最小值和最大值
(3)设n=2,若对任意x1,x2属于[-1,1],有f2(x1)-f2(x2)的绝对值小于等于4,求b的取值范围 展开
(1)设n>=2,b=1c=-1,证明fn(x)在区间(1/2,1)内存在唯一的零点
(2)设n为偶数,f(-1)的绝对值小于等于1,f(1)的绝对值小于等于1,求b+3c的最小值和最大值
(3)设n=2,若对任意x1,x2属于[-1,1],有f2(x1)-f2(x2)的绝对值小于等于4,求b的取值范围 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询