求解答 急急急急!!!! 15
某商店销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量增加盈利,尽快减少库存,商店决定采取适当的减价措施,经调查发现,如果每件衬衫每降价1元,商场平...
某商店销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量增加盈利,尽快减少库存,商店决定采取适当的减价措施,经调查发现,如果每件衬衫每降价1元,商场平均可多售2件,如果商场平均每天盈利1200元,每件衬衫应降价多少元?
展开
3个回答
展开全部
(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,
由题意,得(40-x)(20+2x)=1200,
即:(x-10)(x-20)=0,
解,得x1=10,x2=20,
为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;
(2)假设能达到,由题意,得(40-x)(20+2x)=1500,
整理,得2x2-60x+700=0,
△=602-2×4×700=3600-4200<0,
即:该方程无解,
所以,商场平均每天盈利不能达到1500元;
(3)设商场平均每天盈利y元,每件衬衫应降价x元,
由题意,得y=(40-x)(20+2x)=800+80x-20x-2x2=-2(x-15)2+1250,
当x=15元时,该函数取得最大值为1250元,
所以,商场平均每天盈利最多1250元,达到最大值时应降价15元.
由题意,得(40-x)(20+2x)=1200,
即:(x-10)(x-20)=0,
解,得x1=10,x2=20,
为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;
(2)假设能达到,由题意,得(40-x)(20+2x)=1500,
整理,得2x2-60x+700=0,
△=602-2×4×700=3600-4200<0,
即:该方程无解,
所以,商场平均每天盈利不能达到1500元;
(3)设商场平均每天盈利y元,每件衬衫应降价x元,
由题意,得y=(40-x)(20+2x)=800+80x-20x-2x2=-2(x-15)2+1250,
当x=15元时,该函数取得最大值为1250元,
所以,商场平均每天盈利最多1250元,达到最大值时应降价15元.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设每件衬衫应降价x元。
得
(20+x*2)*(40-x)=1200
解 x=10 答:应降价10元
得
(20+x*2)*(40-x)=1200
解 x=10 答:应降价10元
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询