
初二数学大神快来
(2011•泰州)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.
(1)当∠BAO=45°时,求点P的坐标;
(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;
(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.
(1)当∠BAO=45°时,因为四边形ABCD是正方形,P是AC,BD对角线的交点,能证明OAPB是正方形,从而求出P点的坐标.
(2)过P点作x轴和y轴的垂线,可通过三角形全等,证明是角平分线.
(3)因为点P在∠AOB的平分线上,所以h>0.
解 答(1)解:∵∠BPA=90°,PA=PB,
∴∠PAB=45°,
∵∠BAO=45°,
∴∠PAO=90°,
∴四边形OAPB是正方形,
∴P点的坐标为:((√2/2)a,(√2/2)a
(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,
∵∠BPE+∠EPA=90°,∠EPB+∠FPB=90°,
∴∠FPB=∠EPA,
∵∠PFB=∠PEA,BP=AP,
∴△PBF≌△PAE,
∴PE=PF,
∴点P都在∠AOB的平分线上.
(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE=α.
在直角△APE中,∠AEP=90°,PA=
(√2/2)a
∴PE=PA cosα=(√2/2)acosα
又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),
∴0°≤α<45°,
∴a/2<h≤(√2/2)a
.