神经元之间相互作用的方式有哪些?

匿名用户
2013-07-30
展开全部
(一)突触传递
  神经系统由大量的神经元构成。这些神经元之间在结构上并没有原生质相连,仅互相接触,其接触的部位称为突触。由于接触部位的不同,突触主要可分为三类:①轴突-胞体式突触;②轴突-树突式突触;③轴突-效应器式突触.一个神经元的轴突末梢反复分支,末端膨大呈杯状或球状,称为突触小体,与突触后神经元的胞体或突起相接触。一个突触前神经元可与许多突触后神经元形成突触,一个突触后神经元也可与许多突触前神经元的轴突末梢形成突触。一个脊髓前角运动神经元的胞体和树突表面就有1800个左右的突触小体覆盖着。
  在电镜下观察到,突触部位有两层膜,分别称为突触前膜和突触后膜,两膜之间为突触间隙。所以,一个突触由突触前膜、突触间隙和突触后膜三部分构成。前膜和后膜的厚度一般只7nm左右,间隙为20nm左右。在靠近前膜的轴浆内含有线粒体和突触小泡,小泡的直径为30~60nm,其中含有化学递质。在前膜的内侧有致密突起和网格形成的囊泡栏栅,其空隙处正好容纳一个突触小泡,它可能有引导突触小泡与前膜接触的作用,促进突触小泡内递质的释放。当突触前神经元传来的冲动到达突触小体时,小泡内的递质即从前膜释放出来,进入突触间隙,并作用于突触后膜;如果这种作用足够大时,即可引起突触后神经元发生兴奋或抑制反应。
  目前还观察到,单胺类递质的神经元的突触传递另有一种方式。这类神经元的轴突末梢有许多分支,在分支上有大量的结节状曲张体。曲张体内含有大量的小泡(图11-3),是递质释放的部位。但是,曲张体并不与突触后神经元或效应细胞直接接触,而是处在它们的附近。当神经冲动抵达曲张体时,递质从曲张体释放出来,通过弥散作用到突触后细胞膜的受体,产生传递效应。这种传递方式,在中枢神经系统内和交感神经节后纤维上都存在。
  (二)缝隙连接
  高等动物神经元之间的信息联系还可通过缝隙连接来完成。例如,大脑皮层的星状细胞、小脑皮层的篮状细胞等都有缝隙连接。局部电流可以通过缝隙连接,当一侧膜去极化时,可由于电紧张性作用导致另一侧膜也去极化。所以,缝隙连接也称为电突触。
上海宇玫博生物科技有限公司
2023-08-27 广告
神经元包含神经纤维。 神经元就是神经细胞。神经纤维是神经元的一部分,长的,把信息(神经冲动)传来传去。神经元就整合这些信息。 中间神经元也是神经细胞,当然也是神经元 神经元(neuron)是高等动物神经系统的结构单位和功能单位,又被称为神经... 点击进入详情页
本回答由上海宇玫博生物科技有限公司提供
匿名用户
2013-07-30
展开全部
(1)突触连接:神经元之间互相接触并传递信息的部位,称为突触。根据神经元的轴突末梢与其他神经元的细胞体或突起互相接触的部位不同,把突触分为轴突—胞体突触、轴突-树突突触、轴突—轴突突触3类。突触由突触前膜、突触间隙和突触后膜构成。突触前神经元轴突末梢分支末端膨大形成突触小体。突触小体内有大量突触小泡,其中贮存神经递质。
  突触前神经元的活动经突触引起突触后神经元活动的过程称突触传递,一般包括电—化学—电三个环节。突触前神经元的兴奋传到其轴突分支末端时,使突触前膜对Ca2+的通透性增加,Ca2+内流,促使突触小泡移向突触前膜,并与之融合,小泡破裂释放出递质,经突触间隙与突触后膜相应受体结合,引起突触后神经元活动的改变。如果突触前膜释放的是兴奋性递质将促使突触后膜提高对Na+、K+、Cl-,特别是对Na+的通透性,主要使Na+内流,从而引起局部去极化,此称为兴奋性突触后电位(EPSP)。当这种局部电位达到一定阈值时,即可激发突触后神经元的扩布性兴奋。当突触前膜释放抑制性递质时,则提高突触后膜对K+、Cl-,特别是对Cl-的通透性,主要使Cl-内流,引起局部超极化,此称为抑制性突触后电位(IPSP)。突触后膜的超极化,使突触后神经元呈现抑制效应。根据突触前神经元活动对突触后神经元功能活动影响的不同,突触又可分为兴奋性突触和抑制性突触两类。
  (2)非突触性化学传递
  中枢神经内还存在非突触性化学传递。单胺类神经元轴突末梢的分支上有大量结节状的曲张体,其中的小泡有递质贮存。当神经冲动抵达时,递质即从曲张体释放出来,与附近效应细胞的受体结合而发生信息传递效应。因为曲张体并不与效应细胞形成通常所说的突触联系,故称为非突触性化学传递。
  (3)缝隙连接
  神经元之间的缝隙连接,是指两个神经元膜紧密接触的部位,其间隔有2~3nm的间隙。由于连接部位的膜阻抗较低,可发生双向直接电传递,故有助于促进不同神经元产生同步性放电。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式