怎样求条件概率密度?

设随机变量(X,Y)的概率密度为:当|y|<x,0<x1时,f(x,y)=1,当x、y取其他值时,f(x,y)=0,怎样求条件概率密度?... 设随机变量(X,Y)的概率密度为:当|y|<x,0<x1时,f(x,y)=1,当x、y取其他值时,f(x,y)=0,怎样求条件概率密度? 展开
 我来答
小圆帽聊汽车
高粉答主

2019-08-01 · 致力于汽车领域知识的解答
小圆帽聊汽车
采纳数:796 获赞数:270536

向TA提问 私信TA
展开全部

条件概率密度=联合概率密度/边缘概率密度X的边缘密度:对y进行积分,被积函数是联合密度Y的边缘密度:对x进行积分,被积函数是联合密度积分区域的话,可以画出图来,就比较明了了。

对于连续型的随机变量,在一点处的取值概率为0,但是当这个问题出现在求条件概率密度时,思考的方向就变了,不能单纯的应用条件概率公式解题。

对于第三问如果你用条件概率公式

那么分母P(x=1/3),我的第一想法是这个概率为0啊,这样还怎么解题?此处出现重大认识上的误区!正确的做法应该是你求出x的边缘概率密度,然后看x=1/3处的结果,是多少就是多少,所以对于这道题而言,求出x的边缘概率密度是必须的!

扩展资料:

定义

类条件概率密度函数

是指在已知某类别的特征空间中,出现特征值X的概率密度,指第类样品其属性X是如何分布的。假定只用其一个特征进行分类,即n=1,并已知这两类的类条件概率密度函数分布,如图1所示,概率密度函数

是正常药品的属性分布,概率密度函数是异常药品的属性分布。例如,全世界华人占地球上人口总数的20%,但各个国家华人所占当地人口比例是不同的,类条件概率密度函数

是指条件下出现X的概率密度,在这里指第

类样品其属性X是如何分布的。在工程上的许多问题中,统计数据往往满足正态分布规律。正态分布简单、分析方便、参量少,是一种适宜的数学模型。如果采用正态密度函数作为类条件概率密度的函数形式,则函数内的参数,如期望和方差是未知的。那么问题就变成了如何利用大量样品对这些参数进行估计,只要估计出这些参数,类条件概率密度函数

也就确定了。

在大多数情况下,类条件密度可以采用多维变量的正态密度函数来模拟。

参考资料来源:百度百科-类条件概率密度

王律师案件普法

2019-06-17 · TA获得超过35.9万个赞
知道大有可为答主
回答量:374
采纳率:89%
帮助的人:35.3万
展开全部

条件概率密度=联合概率密度/边缘概率密度X的边缘密度:对y进行积分,被积函数是联合密度Y的边缘密度:对x进行积分,被积函数是联合密度积分区域的话,可以画出图来,就比较明了了。

对于连续型的随机变量,在一点处的取值概率为0,但是当这个问题出现在求条件概率密度时,思考的方向就变了,不能单纯的应用条件概率公式解题。

对于第三问如果你用条件概率公式

那么分母P(x=1/3),我的第一想法是这个概率为0啊,这样还怎么解题?此处出现重大认识上的误区!正确的做法应该是你求出x的边缘概率密度,然后看x=1/3处的结果,是多少就是多少,所以对于这道题而言,求出x的边缘概率密度是必须的!

扩展资料:

密度公式顾名思义就是表示数据分布的密集程度。条件概率密度公式就是指在一定条件下,分布情况。

对于一维实随机变量X,设它的累积分布函数是FX(x)。如果存在可测函数fX(x),满足: 那么X是一个连续型随机变量,并且fX(x)是它的概率密度函数。

连续型随机变量的确切定义应该是:分布函数为连续函数的随机变量称为连续型随机变量。连续型随机变量往往通过其概率密度函数进行直观地描述,连续型随机变量的概率密度函数f(x)具有如下性质:概率密度函数概率密度函数这里指的是一维连续随机变量,多维连续变量也类似。

随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。

参考资料来源:百度百科  ——类条件概率密度

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2017-11-25
展开全部
条件概率密度=联合概率密度/边缘概率密度X的边缘密度:对y进行积分,被积函数是联合密度Y的边缘密度:对x进行积分,被积函数是联合密度积分区域的话,可以画出图来,就比较明了了希望对楼主有帮助~
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式