在RT三角形ABC中,∠C=90度,AB=5,AC=3,点D是BC的中点,点E是边AB上的动点 DF

在RT三角形ABC中,∠C=90度,AB=5,AC=3,点D是BC的中点,点E是边AB上的动点DF⊥DE,交射线AC于点F(1)当EF‖BC时,求BE的长(2)联结EF,... 在RT三角形ABC中,∠C=90度,AB=5,AC=3,点D是BC的中点,点E是边AB上的动点 DF⊥DE,交射线AC于点F
(1)当EF‖BC时,求BE的长
(2)联结EF,当三角形DEF和三角形ABC相似时,求BE的长求详细过程
展开
百度网友b20b593
高粉答主

2013-07-30 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:3.3万
采纳率:97%
帮助的人:2.3亿
展开全部

(1)过点E作EH⊥BC,垂足为H.
易得△EHB∽△ACB
设EH=CF=3k,BH=4k,BE=5k;
∵EF∥BC∴∠EFD=∠FDC
∵∠FDE=∠C=90°
∴△EFD∽△FDC
∴EF /FD   =FD  /CD   ∴FD²=EF•CD,
即9k2+4=2(4-4k)
化简,得9k²+8k-4=0
解得k=(-4±2√13)/ 9 (负值舍去),
∴BE=5k=(10√13-20)/9
(2)过点E作EH⊥BC,垂足为H.
易得△EHB∽△ACB
设EH=3k,BE=5k
∵∠HED+∠HDE=90°∠FDC+∠HDE=90°
∴∠HED=∠FDC
∵∠EHD=∠C=90°
∴△EHD∽△DCF
∴EH /CD   =DE /DF   ,

当△DEF和△ABC相似时,

有两种情况:

①DE/DF =AC /BC =3 /4   ,
∴EH /CD =3/4  ,即3k/2 =3/4  
解得k=1/2   ,
∴BE=5k=5 /2  
②DE /DF =BC /AC=4 /3  ,
∴EH/CD  =4/3  ,即3k/2=4/3  
解得k=8/9   ,
∴BE=5k=40/9  
综合①、②,当△DEF和△ABC相似时,BE的长为5/2 或40/9

很高兴为您解答,祝你学习进步!

有不明白的可以追问!如果您认可我的回答,请选为满意答案,并点击好评,谢谢!

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式