求解:∫sin²xcos³x dx
3个回答
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
∫sin²xcos³xdx
=∫sin²xcos²xdsinx
=∫sin²x(1-sin²x)dsinx
=∫sin²xdsinx-∫sin^4xdsinx
=1/3sin³x-1/5sin^5x+C
=∫sin²xcos²xdsinx
=∫sin²x(1-sin²x)dsinx
=∫sin²xdsinx-∫sin^4xdsinx
=1/3sin³x-1/5sin^5x+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫sin^2xcos^3xdx = ∫sin^2x (1-sin^2x)dsinx= ∫sin^2x-sin^4x dx = (1/3) sin^3x-(1/5)sin^5x+C
不是让你求助我吗。。不要悬赏帮你解答的
不是让你求助我吗。。不要悬赏帮你解答的
更多追问追答
追问
∫sin^2x (1-sin^2x)dsinx 这一步用分步积分吗?我怎么变不到∫sin^2x-sin^4x dx呢?
追答
不是分部积分
乘开就行了。我漏写了一个dx
∫sin^2xdx-∫sin^4x dx =
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询