带小数点的二进制转换成16进制的方法是什么?
二进制数转换成十六进制数:由于2的4次方=16,所以依照二进制与八进制的转换方法,将二进制数的每四位用一个十六进制数码来表示,整数部分以小数点为界点从右往左每四位一组转换,小数部分从小数点开始自左向右每四位一组进行转换。
二进制:
二进制是计算技术中广泛采用的一种 数制。 二进制数据是用0和1两个 数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师 莱布尼兹发现。当前的 计算机系统使用的基本上是 二进制系统,数据在 计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
20世纪被称作 第三次科技革命的重要标志之一的 计算机的发明与应用,因为数字计算机只能 识别和 处理由‘0’.‘1’符号串组成的 代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本 算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
十六进制:
十六进制(英文名称:Hexadecimal),是计算机中数据的一种表示方法。同我们日常生活中的表示法不一样。它由0-9,A-F组成,字母不区分大小写。与10进制的对应关系是:0-9对应0-9;A-F对应10-15;N进制的数可以用0~(N-1)的数表示,超过9的用字母A-F。
2024-07-18 广告
2013-08-01
我们也一样,只要学完这一小节,就能做到。
首先我们来看一个二进制数:1111,它是多少呢?
你可能还要这样计算:1 * 20 + 1 * 21 + 1 * 22 + 1 * 23 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。
然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为23 = 8,然后依次是 22 = 4,21=2, 20 = 1。
记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。
下面列出四位二进制数 xxxx 所有可能的值(中间略过部分)
仅4位的2进制数 快速计算方法 十进制值 十六进值
1111 = 8 + 4 + 2 + 1 = 15 F
1110 = 8 + 4 + 2 + 0 = 14 E
1101 = 8 + 4 + 0 + 1 = 13 D
1100 = 8 + 4 + 0 + 0 = 12 C
1011 = 8 + 4 + 0 + 1 = 11 B
1010 = 8 + 0 + 2 + 0 = 10 A
1001 = 8 + 0 + 0 + 1 = 10 9
....
0001 = 0 + 0 + 0 + 1 = 1 1
0000 = 0 + 0 + 0 + 0 = 0 0
二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。
如(上行为二制数,下面为对应的十六进制):
1111 1101 , 1010 0101 , 1001 1011
F D , A 5 , 9 B
反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢?
先转换F:
看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。
接着转换 D:
看到D,知道它是13,13如何用8421凑呢?应该是:8 + 2 + 1,即:1011。
所以,FD转换为二进制数,为: 1111 1011
由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。
0.11二进制先转化16进制。
这里要明白的问题就是一位十六进制数等于四位二进制数。
而转化的法制就是以四位二进制数为单位,转化为十六进制数。
0.11这里只有两位,不够四位。
这时需要补0,凑够四位。
但不能在11前补,而是应该在11后面补。
补齐后等于0.1100
1100等于12,
也就是等于十六进制的C,
所以0.1100就等于0.C这个十六进制数。
2013-08-01
首先我们是把它分为两个部分,200和0.25
然后我们求200的二进制,相信你应该知道
接下来就是这个0.25了,我们要每次乘2来取整数部分,想0.25*2=0.50,那么第一个就是0了,以此类推,0.25的二进制数就是0.01。
也就是说200.24=(11001000.01)2
我举的例子是可以得到整数的,还有不能得到整数的小数,这个就要循环了,方法一样,我就不多讲了。
2013-08-01