高中数学,求详解(最好附过程图)
1个回答
展开全部
答:
y=3sin(π/4-2x)=-3sin(2x-π/4)
(1)
当sin(2x-π/4)=-1时,y取得最大值为3
2x-π/4=2kπ-π/2,x=kπ-π/8,x={x|x=kπ-π/8,k∈Z}
当sin(2x-π/4)=1时,y取得最小值为-3
2x-π/4=2kπ+π/2,x=kπ+3π/8,x={x|x=kπ+3π/8,k∈Z}
(2)
单调递减区间满足:
2kπ-π/2<=2x-π/4<=2kπ+π/2
单调递增区间满足:
2kπ+π/2<=2x-π/4<=2kπ+3π/2
请稍后,时间不够...
y=3sin(π/4-2x)=-3sin(2x-π/4)
(1)
当sin(2x-π/4)=-1时,y取得最大值为3
2x-π/4=2kπ-π/2,x=kπ-π/8,x={x|x=kπ-π/8,k∈Z}
当sin(2x-π/4)=1时,y取得最小值为-3
2x-π/4=2kπ+π/2,x=kπ+3π/8,x={x|x=kπ+3π/8,k∈Z}
(2)
单调递减区间满足:
2kπ-π/2<=2x-π/4<=2kπ+π/2
单调递增区间满足:
2kπ+π/2<=2x-π/4<=2kπ+3π/2
请稍后,时间不够...
更多追问追答
追答
所以:
单调递减区间为[kπ-π/8,kπ+3π/8],k∈Z
单调递增区间为[kπ+3π/8,kπ+7π/8],k∈Z
追问
可以给个过程图么~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询