可对角化的矩阵的秩等于其非零特征值的个数....这个知识点是怎么推导出来的

lry31383
高粉答主

推荐于2018-04-17 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
A可对角化时, 存在可逆矩阵P使得 P^-1AP=diag(a1,..,an)
则 R(A) = R(P^-1AP) = Rdiag(a1,...,an) = a1,...,an中非零元素的个数
而A的特征值即 a1,...,an
所以 R(A) 等于A的非零特征值的个数.
来自:求助得到的回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式