5个回答
2008-06-22
展开全部
应用
(一)整数和小数的应用
1 简单应用题
(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2) 解题步骤:
a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
2 复合应用题
(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
d答案:根据计算的结果,先口答,逐步过渡到笔答。
( 3 ) 解答加法应用题:
a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
(4 ) 解答减法应用题:
a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。
(5 ) 解答乘法应用题:
a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。
b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。
( 6) 解答除法应用题:
a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。
b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。
C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。
d已知一个数的几倍是多少,求这个数的应用题。
(7)常见的数量关系:
总价= 单价×数量
路程= 速度×时间
工作总量=工作时间×工效
总产量=单产量×数量
3典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)
2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)
(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)
(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。
(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)
(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。
(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。
(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21-( 48-21 )÷( 4-1 ) =12 (年)
(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
(二)分数和百分数的应用
1 分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3 分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。
已知一个数的几分之几(或百分之几 ) ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量。
4 出勤率
发芽率=发芽种子数/试验种子数×100%
小麦的出粉率= 面粉的重量/小麦的重量×100%
产品的合格率=合格的产品数/产品总数×100%
职工的出勤率=实际出勤人数/应出勤人数×100%
5 工程问题:
是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。
数量关系式:
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
工作总量÷工作效率和=合作时间
6 纳税
纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
缴纳的税款叫应纳税款。
应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。
* 利息
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间
(一)整数和小数的应用
1 简单应用题
(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2) 解题步骤:
a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
2 复合应用题
(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
d答案:根据计算的结果,先口答,逐步过渡到笔答。
( 3 ) 解答加法应用题:
a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
(4 ) 解答减法应用题:
a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。
(5 ) 解答乘法应用题:
a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。
b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。
( 6) 解答除法应用题:
a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。
b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。
C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。
d已知一个数的几倍是多少,求这个数的应用题。
(7)常见的数量关系:
总价= 单价×数量
路程= 速度×时间
工作总量=工作时间×工效
总产量=单产量×数量
3典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)
2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)
(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)
(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。
(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)
(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。
(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。
(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21-( 48-21 )÷( 4-1 ) =12 (年)
(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
(二)分数和百分数的应用
1 分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3 分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。
已知一个数的几分之几(或百分之几 ) ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量。
4 出勤率
发芽率=发芽种子数/试验种子数×100%
小麦的出粉率= 面粉的重量/小麦的重量×100%
产品的合格率=合格的产品数/产品总数×100%
职工的出勤率=实际出勤人数/应出勤人数×100%
5 工程问题:
是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。
数量关系式:
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
工作总量÷工作效率和=合作时间
6 纳税
纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
缴纳的税款叫应纳税款。
应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。
* 利息
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间
展开全部
六年级语文毕业试卷
姓名
一、 看拼音写词语:5%
kăn kĕ dĭng shèng gōu hè jùn gōng xún huán
( ) ( ) ( ) ( ) ( )
二、 补充词语,并解释所填字的意思:9%
应接不( ) 身( )其境
( )烛夜游 兴国安( )
毫不气( ) 神机( )算
三、 判断题:8%
1、按字母表的排列顺序,下列字母排列是否正确:F O S Q T U ……( )
2、“不劳动,连棵花也养不活,这难道不是真理吗?”是反问句。……………( )
3、“面对波涛滚滚的大海尽情歌唱。”这句话没有毛病。 ………………………( )
4、卖火柴的小女孩是因为天气太冷,可怜地冻死在街头。 ……………………( )
5、“己所不欲,勿施于人。”这句格言是告诫人们要关心别人,时时处处想到别人。…
…………………………………………………………………………………………( )
6、“不可开交、交口称赞”二词中的“交”字意思一样。………………………( )
7、对“许多大大小小的鸟做窝在这树上。”一句缩句应为“鸟做窝。” ………( )
8、《别了,我爱的中国》一文中的“我”是一代“语言大师”老舍。………… ( )
四、 选词填空:8%
激烈 猛烈 热烈 强烈
1、突然,飞机遇到了一股( )的寒流,机翼和螺旋桨上都结了冰,越结越厚。
2、辩论双方( )精彩的答辩,一次又一次博得在场观众( )的掌声。
刚强 坚强
1、面对敌人的严刑拷打,夏明翰始终没有屈服,表现得十分( )。
坚持 支持
1、这几天,张老师病了,但他仍( )上课,今天上午数学课时,他终于(
)不住,晕倒在讲台上。
特意 执意
1、王老师虽然一直高烧不退,但他( )不肯休息,坚持为我们讲课。
2、叔叔从上海回来,( )给我买回了一把小提琴。
五、 按课文或课文内容填空:11%
1、《赠汪伦》的作者是 。这首诗的后两句是 ,
。这两句用 的方法表现出
。
2、那翠绿的颜色, 照耀着我们的眼睛, 每一片绿叶上都
有一个新的 在 。这一段话抓住了榕树富有
的特点,描写了 的景象。
3、有 有 ,有 有 ,有 有 ,有 有 。
既需 ,又长 。这就是养花的乐趣。这段话的第一句采用了
修辞手法。
六、 按顺序排列下面错乱的句子,用1、2、3……表示:6%
( )正当老奶奶“啊哟,啊哟”哼的时候,那位阿姨连一句“对不起”都没说,骑上
自行车飞快地跑了。
( )她头发乌黑发亮,穿着一件连衣裙,一双白得发亮的皮鞋,好看极了。
( )我们使劲地叫她,她装聋。
( )刚刚放学,在回家的路上,我看见一位骑着“凤凰”牌自行车的阿姨。
( )这时,我才了解到她的外表打扮得那么好看,只是为了遮住丑恶的心灵。
( )这时,刚刚有一位白发苍苍的老奶奶穿过巷子,那位阿姨刹车不灵,一下子把老
奶奶撞倒了。
七、 阅读语段,完成作业:17%
(一)
(二)
老爷爷看花,一面看一面自语,嘴里低吟着什么。老奶奶看花,拄者拐杖,牵着孙孙,有的还很珍惜地摘下一朵,簪在自己的发髻上。青年们穿得整整齐齐,干干净净,好像参加什么盛会,不少人已经穿上雪白的衬衫,有的甚至是绸衬衫。小学生们系着红领巾,叫啊,跳啊,被这一望无际的花海惊呆了。
1、给文中加点的两个字分别注音:盛( ) 系( )2分
2、这段话写到的主要人物有( )、( )、( )、( )。
他们共同的心情是( )。3分
3、写出下列词语的反义词:2分
低吟( ) 珍惜( )
4、这段话属于( )段式。1分
(三)
天 山 景 物
七月间新疆的戈壁滩炎暑逼人,这时最理想的是骑马上天山。
进入天山,戈壁滩上的炎暑就远远被抛在后边。迎面送来的雪山寒气,立刻使你感到
秋天般的凉爽。蔚蓝的天空衬着矗立着的巨大的雪峰。几块白云在雪峰间投下云影,就像
雪白的绸缎上绣上了几条银灰的暗花。那融化的雪水从雪峰的峭壁断崖上飞泻下来,闪耀
银光。在那白雪皑皑的群峰脚下,是连绵不断的翠绿的原始森林,密密的塔松像无数撑天
的巨伞。夕阳西下,阳光透过重重叠叠的枝丫,在苍绿的苔藓上留下斑斑点点细碎的日影。
小山坡上,有一条清澈见底的小溪流,两岸到处是高过马头的野花,红、黄、蓝、白、紫,
五彩缤纷,绚丽夺目。马走在花海中,显得格外矫健;人浮在花海上,也显得各精神。在
马上你不用离鞍,只要一伸手就可以捧到满怀的你最心爱的鲜花。
虽然这时并不是春天,但是有哪一个春天的花园能比这时的天山更美丽呢?
1、 找出文中描写颜色的双音节以上的词语(两个字以上组成的词),写在下面:5分
2、从文中找出下面词语的近义词:2分
耸立( ) 酷热 ( )
3、 出文章中的两个比喻句,在文中用“——”标出。2分
4、 说说你对文章最后一句话的理解。3分
姓名
一、 看拼音写词语:5%
kăn kĕ dĭng shèng gōu hè jùn gōng xún huán
( ) ( ) ( ) ( ) ( )
二、 补充词语,并解释所填字的意思:9%
应接不( ) 身( )其境
( )烛夜游 兴国安( )
毫不气( ) 神机( )算
三、 判断题:8%
1、按字母表的排列顺序,下列字母排列是否正确:F O S Q T U ……( )
2、“不劳动,连棵花也养不活,这难道不是真理吗?”是反问句。……………( )
3、“面对波涛滚滚的大海尽情歌唱。”这句话没有毛病。 ………………………( )
4、卖火柴的小女孩是因为天气太冷,可怜地冻死在街头。 ……………………( )
5、“己所不欲,勿施于人。”这句格言是告诫人们要关心别人,时时处处想到别人。…
…………………………………………………………………………………………( )
6、“不可开交、交口称赞”二词中的“交”字意思一样。………………………( )
7、对“许多大大小小的鸟做窝在这树上。”一句缩句应为“鸟做窝。” ………( )
8、《别了,我爱的中国》一文中的“我”是一代“语言大师”老舍。………… ( )
四、 选词填空:8%
激烈 猛烈 热烈 强烈
1、突然,飞机遇到了一股( )的寒流,机翼和螺旋桨上都结了冰,越结越厚。
2、辩论双方( )精彩的答辩,一次又一次博得在场观众( )的掌声。
刚强 坚强
1、面对敌人的严刑拷打,夏明翰始终没有屈服,表现得十分( )。
坚持 支持
1、这几天,张老师病了,但他仍( )上课,今天上午数学课时,他终于(
)不住,晕倒在讲台上。
特意 执意
1、王老师虽然一直高烧不退,但他( )不肯休息,坚持为我们讲课。
2、叔叔从上海回来,( )给我买回了一把小提琴。
五、 按课文或课文内容填空:11%
1、《赠汪伦》的作者是 。这首诗的后两句是 ,
。这两句用 的方法表现出
。
2、那翠绿的颜色, 照耀着我们的眼睛, 每一片绿叶上都
有一个新的 在 。这一段话抓住了榕树富有
的特点,描写了 的景象。
3、有 有 ,有 有 ,有 有 ,有 有 。
既需 ,又长 。这就是养花的乐趣。这段话的第一句采用了
修辞手法。
六、 按顺序排列下面错乱的句子,用1、2、3……表示:6%
( )正当老奶奶“啊哟,啊哟”哼的时候,那位阿姨连一句“对不起”都没说,骑上
自行车飞快地跑了。
( )她头发乌黑发亮,穿着一件连衣裙,一双白得发亮的皮鞋,好看极了。
( )我们使劲地叫她,她装聋。
( )刚刚放学,在回家的路上,我看见一位骑着“凤凰”牌自行车的阿姨。
( )这时,我才了解到她的外表打扮得那么好看,只是为了遮住丑恶的心灵。
( )这时,刚刚有一位白发苍苍的老奶奶穿过巷子,那位阿姨刹车不灵,一下子把老
奶奶撞倒了。
七、 阅读语段,完成作业:17%
(一)
(二)
老爷爷看花,一面看一面自语,嘴里低吟着什么。老奶奶看花,拄者拐杖,牵着孙孙,有的还很珍惜地摘下一朵,簪在自己的发髻上。青年们穿得整整齐齐,干干净净,好像参加什么盛会,不少人已经穿上雪白的衬衫,有的甚至是绸衬衫。小学生们系着红领巾,叫啊,跳啊,被这一望无际的花海惊呆了。
1、给文中加点的两个字分别注音:盛( ) 系( )2分
2、这段话写到的主要人物有( )、( )、( )、( )。
他们共同的心情是( )。3分
3、写出下列词语的反义词:2分
低吟( ) 珍惜( )
4、这段话属于( )段式。1分
(三)
天 山 景 物
七月间新疆的戈壁滩炎暑逼人,这时最理想的是骑马上天山。
进入天山,戈壁滩上的炎暑就远远被抛在后边。迎面送来的雪山寒气,立刻使你感到
秋天般的凉爽。蔚蓝的天空衬着矗立着的巨大的雪峰。几块白云在雪峰间投下云影,就像
雪白的绸缎上绣上了几条银灰的暗花。那融化的雪水从雪峰的峭壁断崖上飞泻下来,闪耀
银光。在那白雪皑皑的群峰脚下,是连绵不断的翠绿的原始森林,密密的塔松像无数撑天
的巨伞。夕阳西下,阳光透过重重叠叠的枝丫,在苍绿的苔藓上留下斑斑点点细碎的日影。
小山坡上,有一条清澈见底的小溪流,两岸到处是高过马头的野花,红、黄、蓝、白、紫,
五彩缤纷,绚丽夺目。马走在花海中,显得格外矫健;人浮在花海上,也显得各精神。在
马上你不用离鞍,只要一伸手就可以捧到满怀的你最心爱的鲜花。
虽然这时并不是春天,但是有哪一个春天的花园能比这时的天山更美丽呢?
1、 找出文中描写颜色的双音节以上的词语(两个字以上组成的词),写在下面:5分
2、从文中找出下面词语的近义词:2分
耸立( ) 酷热 ( )
3、 出文章中的两个比喻句,在文中用“——”标出。2分
4、 说说你对文章最后一句话的理解。3分
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2008年小学毕业数学模拟试卷(人教版)
作者:未知 资料来源:网络 点击数: 更新时间:2008-6-4 18:48:39
一. 基本概念。(0.30)
1. 填空(0.20)
(1)3平方米8平方分米=( )平方分米
(2) 的倒数是( ),( )的倒数是它本身,( )没有倒数。
(3)比15千米多 是( )千米;比( )千米少 是10千米。
(4)六(1)班有一天出勤38人,缺勤2人,该班这天的出勤率是( )%。
(5)体育课上同学们围成一个圆圈做游戏,这个圆圈的周长是12.56米,老师站在中心点上,每个同学与老师间的距离是( )米。
(6)在○中填上“>”、“<”或“=”。
○10 ○
○ ○
(7)
(8)在一个边长6厘米的正方形中画一个最大的圆,圆规两脚间的距离应取( )厘米,画出的圆的面积是( )平方厘米。
(9)两个连续的偶数,大数比小数多25%,小数是( ),大数是( )。
(10)新年期间,一件标价1580元的女式大衣在以下四家商场的促销情况如下:
商场
促销方式
甲
满100送50元礼券
乙
满200元送100元礼券
丙
打六五折
丁
满200减50元现金
小红说:甲、乙两个商场所送的礼券同样多;
小芳说:丙商场最便宜;
小亮说:丁商场优惠后大衣的价钱是1185元。你认为谁说的对?
________________________________________________________
2. 判断下面各题。正确的在括号里画“√”,错误的画“×”。(0.04)
(1)半径为r的圆的面积是边长为r的正方形面积 倍。( )
(2)六年级男生人数比女生少2人,女生人数比男生多 。求女生人数的正确列式是 。( )
3. 选择正确答案的序号填在括号里。(0.06)
(1)在2.38的后面添上百分号,这个数就( )
①扩大100倍 ②缩小100倍 ③大小不变
(2)学校食堂原有大米100千克,吃掉40%后,又买进( ),这时食堂里的大米是原来的90%。
①30千克 ②40千克 ③90千克
(3)在一张长12厘米,宽6厘米长方形纸中,最多可以剪( )个直径为3厘米的圆。
①4 ②8 ③21
二. 基本计算。(0.26)
1. 直接写出计算结果。(0.04)
2. 用简便方法计算下面各题。(0.06)
(1)
(2)
3. 脱式计算下面各题。(0.16)
(1)
(2)
(3)
(4)
三. 图形与计算。(0.09)
1. 请在方格子上画一个轴对称图形,并画出对称轴。(0.04)
2. 一个圆形花坛,外面铺了一条甬道,花坛半径为4米,甬道宽2米。这圈甬道的占地面积是多少平方米?(0.05)
四. 解决问题。(0.35)
1. 欣欣小学有学生960人,其中在学校吃午餐的有840人,在校用午餐的学生占百分之几?(0.05)
2. 陕西的兵马俑被称作“世界八大奇迹之一”,共有8000件陶俑,其中步兵俑占陶俑总数的40%,其他陶俑有多少件?(0.06)
3. 教育储蓄是免征利息税的。
到期后可以得到多少元利息?(0.06)
4. 运送一批水果,甲、乙两车合运需要6小时,甲车单独运需要15小时,乙车单独运这批水果的 ,需要几小时?(0.06)
5. 新光超市糕点组一月份计划营业额是24000元,_____________。实际营业额是多少元?(0.06)
(1)用 计算,应补充的条件是____________________________。
(2)用 计算,应补充的条件是____________________________。
6. 计划修路600米,20小时内完成。
照这样计算,能在计划时间内完成吗?为什么?(0.06)
【试题答案】
一. 基本概念。(0.30)
1. 填空(0.20)
(1)3平方米8平方分米=(308)平方分米
(2) 的倒数是(4),(1)的倒数是它本身,(0)没有倒数。
(3)比15千米多 是(20)千米;比(15)千米少 是10千米。
(4)六(1)班有一天出勤38人,缺勤2人,该班这天的出勤率是(95)%。
(5)体育课上同学们围成一个圆圈做游戏,这个圆圈的周长是12.56米,老师站在中心点上,每个同学与老师间的距离是(2)米。
(6)在○中填上“>”、“<”或“=”。
(7)
(8)在一个边长6厘米的正方形中画一个最大的圆,圆规两脚间的距离应取(3)厘米,画出的圆的面积是(28.26)平方厘米。
(9)两个连续的偶数,大数比小数多25%,小数是(8),大数是(10)。
(10)新年期间,一件标价1580元的女式大衣在以下四家商场的促销情况如下:
商场
促销方式
甲
满100送50元礼券
乙
满200元送100元礼券
丙
打六五折
丁
满200减50元现金
小红说:甲、乙两个商场所送的礼券同样多;
小芳说:丙商场最便宜;
小亮说:丁商场优惠后大衣的价钱是1185元。你认为谁说的对?
小芳对。
2. 判断下面各题。正确的在括号里画“√”,错误的画“×”。(0.04)
(1)半径为r的圆的面积是边长为r的正方形面积 倍。(√)
(2)六年级男生人数比女生少2人,女生人数比男生多 。求女生人数的正确列式是 。(×)
3. 选择正确答案的序号填在括号里。(0.06)
(1)在2.38的后面添上百分号,这个数就(②)
①扩大100倍 ②缩小100倍 ③大小不变
(2)学校食堂原有大米100千克,吃掉40%后,又买进(①),这时食堂里的大米是原来的90%。
①30千克 ②40千克 ③90千克
(3)在一张长12厘米,宽6厘米长方形纸中,最多可以剪(②)个直径为3厘米的圆。
①4 ②8 ③21
二. 基本计算。(0.26)
1. 直接写出计算结果。(0.04)
2. 用简便方法计算下面各题。(0.06)
(1)
(2)
3. 脱式计算下面各题。(0.16)
(1)
(2)
(3)
(4)
三. 图形与计算。(0.09)
1. 请在方格子上画一个轴对称图形,并画出对称轴。(0.04)
(答案不唯一)
2. 一个圆形花坛,外面铺了一条甬道,花坛半径为4米,甬道宽2米。这圈甬道的占地面积是多少平方米?(0.05)
答:这圈甬道的占地面积是62.8平方米。
四. 解决问题。(0.35)
1. 欣欣小学有学生960人,其中在学校吃午餐的有840人,在校用午餐的学生占百分之几?(0.05)
答:在校用午餐的学生占87.5%。
2. 陕西的兵马俑被称作“世界八大奇迹之一”,共有8000件陶俑,其中步兵俑占陶俑总数的40%,其他陶俑有多少件?(0.06)
(件)
答:其他陶俑有4800件。
3. 教育储蓄是免征利息税的。
到期后可以得到多少元利息?(0.06)
(元)
答:到期后可以得到3348元利息。
4. 运送一批水果,甲、乙两车合运需要6小时,甲车单独运需要15小时,乙车单独运这批水果的 ,需要几小时?(0.06)
(小时)
答:需要6小时。
5. 新光超市糕点组一月份计划营业额是24000元,_____________。实际营业额是多少元?(0.06)
(1)用 计算,应补充的条件是 。
(2)用 计算,应补充的条件是 。
6. 计划修路600米,20小时内完成。
照这样计算,能在计划时间内完成吗?为什么?(0.06)
解法不唯一
能完成任务
时间:3小时只占20小时的15%,而工作量已完成20%,照这样计算,一定能在计划时间内完成任务。
作者:未知 资料来源:网络 点击数: 更新时间:2008-6-4 18:48:39
一. 基本概念。(0.30)
1. 填空(0.20)
(1)3平方米8平方分米=( )平方分米
(2) 的倒数是( ),( )的倒数是它本身,( )没有倒数。
(3)比15千米多 是( )千米;比( )千米少 是10千米。
(4)六(1)班有一天出勤38人,缺勤2人,该班这天的出勤率是( )%。
(5)体育课上同学们围成一个圆圈做游戏,这个圆圈的周长是12.56米,老师站在中心点上,每个同学与老师间的距离是( )米。
(6)在○中填上“>”、“<”或“=”。
○10 ○
○ ○
(7)
(8)在一个边长6厘米的正方形中画一个最大的圆,圆规两脚间的距离应取( )厘米,画出的圆的面积是( )平方厘米。
(9)两个连续的偶数,大数比小数多25%,小数是( ),大数是( )。
(10)新年期间,一件标价1580元的女式大衣在以下四家商场的促销情况如下:
商场
促销方式
甲
满100送50元礼券
乙
满200元送100元礼券
丙
打六五折
丁
满200减50元现金
小红说:甲、乙两个商场所送的礼券同样多;
小芳说:丙商场最便宜;
小亮说:丁商场优惠后大衣的价钱是1185元。你认为谁说的对?
________________________________________________________
2. 判断下面各题。正确的在括号里画“√”,错误的画“×”。(0.04)
(1)半径为r的圆的面积是边长为r的正方形面积 倍。( )
(2)六年级男生人数比女生少2人,女生人数比男生多 。求女生人数的正确列式是 。( )
3. 选择正确答案的序号填在括号里。(0.06)
(1)在2.38的后面添上百分号,这个数就( )
①扩大100倍 ②缩小100倍 ③大小不变
(2)学校食堂原有大米100千克,吃掉40%后,又买进( ),这时食堂里的大米是原来的90%。
①30千克 ②40千克 ③90千克
(3)在一张长12厘米,宽6厘米长方形纸中,最多可以剪( )个直径为3厘米的圆。
①4 ②8 ③21
二. 基本计算。(0.26)
1. 直接写出计算结果。(0.04)
2. 用简便方法计算下面各题。(0.06)
(1)
(2)
3. 脱式计算下面各题。(0.16)
(1)
(2)
(3)
(4)
三. 图形与计算。(0.09)
1. 请在方格子上画一个轴对称图形,并画出对称轴。(0.04)
2. 一个圆形花坛,外面铺了一条甬道,花坛半径为4米,甬道宽2米。这圈甬道的占地面积是多少平方米?(0.05)
四. 解决问题。(0.35)
1. 欣欣小学有学生960人,其中在学校吃午餐的有840人,在校用午餐的学生占百分之几?(0.05)
2. 陕西的兵马俑被称作“世界八大奇迹之一”,共有8000件陶俑,其中步兵俑占陶俑总数的40%,其他陶俑有多少件?(0.06)
3. 教育储蓄是免征利息税的。
到期后可以得到多少元利息?(0.06)
4. 运送一批水果,甲、乙两车合运需要6小时,甲车单独运需要15小时,乙车单独运这批水果的 ,需要几小时?(0.06)
5. 新光超市糕点组一月份计划营业额是24000元,_____________。实际营业额是多少元?(0.06)
(1)用 计算,应补充的条件是____________________________。
(2)用 计算,应补充的条件是____________________________。
6. 计划修路600米,20小时内完成。
照这样计算,能在计划时间内完成吗?为什么?(0.06)
【试题答案】
一. 基本概念。(0.30)
1. 填空(0.20)
(1)3平方米8平方分米=(308)平方分米
(2) 的倒数是(4),(1)的倒数是它本身,(0)没有倒数。
(3)比15千米多 是(20)千米;比(15)千米少 是10千米。
(4)六(1)班有一天出勤38人,缺勤2人,该班这天的出勤率是(95)%。
(5)体育课上同学们围成一个圆圈做游戏,这个圆圈的周长是12.56米,老师站在中心点上,每个同学与老师间的距离是(2)米。
(6)在○中填上“>”、“<”或“=”。
(7)
(8)在一个边长6厘米的正方形中画一个最大的圆,圆规两脚间的距离应取(3)厘米,画出的圆的面积是(28.26)平方厘米。
(9)两个连续的偶数,大数比小数多25%,小数是(8),大数是(10)。
(10)新年期间,一件标价1580元的女式大衣在以下四家商场的促销情况如下:
商场
促销方式
甲
满100送50元礼券
乙
满200元送100元礼券
丙
打六五折
丁
满200减50元现金
小红说:甲、乙两个商场所送的礼券同样多;
小芳说:丙商场最便宜;
小亮说:丁商场优惠后大衣的价钱是1185元。你认为谁说的对?
小芳对。
2. 判断下面各题。正确的在括号里画“√”,错误的画“×”。(0.04)
(1)半径为r的圆的面积是边长为r的正方形面积 倍。(√)
(2)六年级男生人数比女生少2人,女生人数比男生多 。求女生人数的正确列式是 。(×)
3. 选择正确答案的序号填在括号里。(0.06)
(1)在2.38的后面添上百分号,这个数就(②)
①扩大100倍 ②缩小100倍 ③大小不变
(2)学校食堂原有大米100千克,吃掉40%后,又买进(①),这时食堂里的大米是原来的90%。
①30千克 ②40千克 ③90千克
(3)在一张长12厘米,宽6厘米长方形纸中,最多可以剪(②)个直径为3厘米的圆。
①4 ②8 ③21
二. 基本计算。(0.26)
1. 直接写出计算结果。(0.04)
2. 用简便方法计算下面各题。(0.06)
(1)
(2)
3. 脱式计算下面各题。(0.16)
(1)
(2)
(3)
(4)
三. 图形与计算。(0.09)
1. 请在方格子上画一个轴对称图形,并画出对称轴。(0.04)
(答案不唯一)
2. 一个圆形花坛,外面铺了一条甬道,花坛半径为4米,甬道宽2米。这圈甬道的占地面积是多少平方米?(0.05)
答:这圈甬道的占地面积是62.8平方米。
四. 解决问题。(0.35)
1. 欣欣小学有学生960人,其中在学校吃午餐的有840人,在校用午餐的学生占百分之几?(0.05)
答:在校用午餐的学生占87.5%。
2. 陕西的兵马俑被称作“世界八大奇迹之一”,共有8000件陶俑,其中步兵俑占陶俑总数的40%,其他陶俑有多少件?(0.06)
(件)
答:其他陶俑有4800件。
3. 教育储蓄是免征利息税的。
到期后可以得到多少元利息?(0.06)
(元)
答:到期后可以得到3348元利息。
4. 运送一批水果,甲、乙两车合运需要6小时,甲车单独运需要15小时,乙车单独运这批水果的 ,需要几小时?(0.06)
(小时)
答:需要6小时。
5. 新光超市糕点组一月份计划营业额是24000元,_____________。实际营业额是多少元?(0.06)
(1)用 计算,应补充的条件是 。
(2)用 计算,应补充的条件是 。
6. 计划修路600米,20小时内完成。
照这样计算,能在计划时间内完成吗?为什么?(0.06)
解法不唯一
能完成任务
时间:3小时只占20小时的15%,而工作量已完成20%,照这样计算,一定能在计划时间内完成任务。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
还是直接找人家学校的教务处要,好些。。找到电话。让人家给你发个E
都是为教育事业,会给的。
都是为教育事业,会给的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
自己去打电话问,可能不行吧!!!!!!!!!!!!!!!!!!!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询