什么是角动量守恒?
2024-04-02 广告
角动量守恒一般指角动量守恒定律,对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
扩展资料
角动量守恒定律是物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。
这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。
反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律 之一的开普勒第二定律。
一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。
角动量(angular momentum) 在物理学中是和物体到原点的位移和动量相关的物理量。它表征质点矢径扫过面积速度的大小,或刚体定轴转动的剧烈程度。
角动量的特点
1、角动量是描述物体转动状态的量。又称动量矩。
2、角动量是矢量,它在通过O 点的某一轴上的投影就是质点对该轴的角动量(标量)。
3、质点系或刚体对某点(或某轴)的角动量等于其中各质点的动量对该点(或该轴)之矩的矢量(或代数)和。
4、角动量的几何意义是矢径扫过的面积速度的二倍乘以质量。角动量守恒定律指出在合外力矩为零时,物体与中心点的连线单位时间扫过的面积不变,在天体运动中表现为开普勒第二定律。
5、角动量在量子力学中与角度是一对共轭物理量。
6、角动量是刚体动力学中与动量对应的概念,它的大小取决于转动的速率和转动物体的质量分布。
7、在常见的情况下,角动量和角速度方向相同,但更一般地来讲,二者的方向不必相同,甚至在刚体作定轴转动的情况下也是如此(利用向量的三重矢积运算法则可证)。
参考资料:百度百科 角动量守恒
角动量守恒一般指角动量守恒定律,对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
向左转|向右转
扩展资料
角动量守恒定律是物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。
这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。
反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律
之一的开普勒第二定律。
一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931
年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。
角动量(angular momentum) 在物理学中是和物体到原点的位移和动量相关的物理量。它表征质点矢径扫过面积速度的大小,或刚体定轴转动的剧烈程度。
角动量的特点
1、角动量是描述物体转动状态的量。又称动量矩。
2、角动量是矢量,它在通过O 点的某一轴上的投影就是质点对该轴的角动量(标量)。
3、质点系或刚体对某点(或某轴)的角动量等于其中各质点的动量对该点(或该轴)之矩的矢量(或代数)和。
4、角动量的几何意义是矢径扫过的面积速度的二倍乘以质量。角动量守恒定律指出在合外力矩为零时,物体与中心点的连线单位时间扫过的面积不变,在天体运动中表现为开普勒第二定律。
5、角动量在量子力学中与角度是一对共轭物理量。
6、角动量是刚体动力学中与动量对应的概念,它的大小取决于转动的速率和转动物体的质量分布。
7、在常见的情况下,角动量和角速度方向相同,但更一般地来讲,二者的方向不必相同,甚至在刚体作定轴转动的情况下也是如此(利用向量的三重矢积运算法则可证)。
2013-08-01
根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.
此原理多用于天文学,天体运行时自转不变.
注解:
(1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量 ,亦即 ,因而 。这时,物体绕定轴作匀角速转动。
(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大。如芭蕾舞演员表演时就是这样。
(3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。
conservation of angular momentum,law of
反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。