怎样用SPSS进行多元线性回归。我想知道很详细的操作步骤。恳请各位高手帮忙。

匿名用户
2013-08-02
展开全部
第一节 Linear过程

8.1.1 主要功能

调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。

返回目录
返回全书目录

8.1.2 实例操作

〔例8.1〕某医师测得10名3岁儿童的身高(cm)、体重(kg)和体表面积(cm2)资料如下。试用多元回归方法确定以身高、体重为自变量,体表面积为应变量的回归方程。

儿童编号
体表面积(Y)
身高(X1)
体重(X2)

1

2
3

4
5

6
7

8
9

10
5.382

5.299

5.358

5.292

5.602

6.014

5.830

6.102

6.075

6.411
88.0

87.6

88.5

89.0

87.7

89.5

88.8

90.4

90.6

91.2
11.0

11.8

12.0

12.3

13.1

13.7

14.4

14.9

15.2

16.0

8.1.2.1 数据准备

激活数据管理窗口,定义变量名:体表面积为Y,保留3位小数;身高、体重分别为X1、X2,1位小数。输入原始数据,结果如图8.1所示。

图8.1 原始数据的输入

8.1.2.2 统计分析

激活Statistics菜单选Regression中的Linear...项,弹出Linear Regression对话框(如图8.2示)。从对话框左侧的变量列表中选y,点击Ø钮使之进入Dependent框,选x1、x2,点击Ø钮使之进入Indepentdent(s)框;在Method处下拉菜单,共有5个选项:Enter(全部入选法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)。本例选用Enter法。点击OK钮即完成分析。

图8.2
线性回归分析对话框

用户还可点击Statistics...钮选择是否作变量的描述性统计、回归方程应变量的可信区间估计等分析;点击Plots...钮选择是否作变量分布图(本例要求对标准化Y预测值作变量分布图);点击Save...钮选择对回归分析的有关结果是否作保存(本例要求对根据所确定的回归方程求得的未校正Y预测值和标准化Y预测值作保存);点击Options...钮选择变量入选与剔除的α、β值和缺失值的处理方法。

8.1.2.3 结果解释

在结果输出窗口中将看到如下统计数据:

* * * *
M U L T I P L E
R E G R E S S I O N
* * * *

Listwise Deletion of Missing Data

Equation Number 1
Dependent Variable..
Y
Block Number 1. Method: Enter
X1
X2

Variable(s) Entered on Step Number

1..
X2

2..
X1

Multiple R

.94964

R Square

.90181

Adjusted R Square
.87376

Standard Error
.14335

Analysis of Variance

DF
Sum of Squares
Mean Square

Regression

2

1.32104

.66052

Residual

7

.14384

.02055

F =
32.14499
Signif F = .0003

------------------ Variables in the Equation ------------------

Variable

B

SE B
Beta

T Sig T

X1

.068701
.074768
.215256
.919 .3887

X2

.183756
.056816
.757660
3.234 .0144

(Constant)
-2.856476
6.017776

-.475 .6495

End Block Number
1 All requested variables entered.

结果显示,本例以X1、X2为自变量,Y为应变量,采用全部入选法建立回归方程。回归方程的复相关系数为0.94964,决定系数(即r2)为0.90181,经方差分析,F=34.14499,P=0.0003,回归方程有效。回归方程为Y=0.0687101X1+0.183756X2-2.856476。

本例要求按所建立的回归方程计算Y预测值和标准化Y预测值(所谓标准化Y预测值是指将根据回归方程求得的Y预测值转化成按均数为0、标准差为1的标准正态分布的Y值)并将计算结果保存入原数据库。系统将原始的X1、X2值代入方程求Y值预测值(即库中pre_1栏)和标准化Y预测值(即库中zpr_1栏),详见图8.3。

图8.3 计算结果的保存

本例还要求对标准化Y预测值作变量分布图,系统将绘制的统计图送向Chart Carousel窗口,双击该窗口可见下图显示结果。

图8.4 对标准化Y预测值所作的正态分布图
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式