如图,在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是△ABD的角平分线,DF//AB交AE的延长线于点F,求D
如图,在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是△ABD的角平分线,DF//AB交AE的延长线于点F,求DF的长。...
如图,在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是△ABD的角平分线,DF//AB交AE的延长线于点F,求DF的长。
展开
展开全部
解:因为 在三角形ABC中,AB=AC, AD是中线,
所以 AD又是高和角平分线,
所以 角ADB=90度,角BAD=1/2角BAC,
因为 AB=AC, 角BAC=120度,
所以 角B=角C=30度,角BAD=60度,
因为 AE是三角形AED的角平分线,
所以 角DAF=角BAE=1/2角BAD=30度,
因为 DF//AB,
所以 角F=角BAE=30度,
所以 角DAF=角F,
所以 DF=AD,
因为 角ADB=90度,角B=30度,AB=9,
所以 AD=1/2AB=4.5,
所以 DF=4.5。
所以 AD又是高和角平分线,
所以 角ADB=90度,角BAD=1/2角BAC,
因为 AB=AC, 角BAC=120度,
所以 角B=角C=30度,角BAD=60度,
因为 AE是三角形AED的角平分线,
所以 角DAF=角BAE=1/2角BAD=30度,
因为 DF//AB,
所以 角F=角BAE=30度,
所以 角DAF=角F,
所以 DF=AD,
因为 角ADB=90度,角B=30度,AB=9,
所以 AD=1/2AB=4.5,
所以 DF=4.5。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |