1、具有10个叶子结点的二叉树中有(9)个度为2的结点;
2、在计算机科学中,二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”;
3、一棵深度为k,且有2^k-1个结点的二叉树,称为满二叉树。这种树的特点是每一层上的结点数都是最大结点数。扩展资料:
二叉树介绍:
遍历是对树的一种最基本的运算,所谓遍历二叉树,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。由于二叉树是非线性结构,因此,树的遍历实质上是将二叉树的各个结点转换成为一个线性序列来表示。
若结点是二叉树的根,则其后继为空;若结点是其双亲的右孩子,或是其双亲的左孩子且其双亲没有右子树,则其后继即为双亲结点;若结点是其双亲的左孩子,且其双亲有右子树,则其后继为双亲右子树上按后序遍历列出的第一个结点。
参考资料来源:百度百科-二叉树
具有10个叶子结点的二叉树中有9个度为2的结点。叶子结点个数=度为2的结点个数+1。
一棵深度为k,且有2^k-1个结点的二叉树,称为满二叉树。这种树的特点是每一层上的结点数都是最大结点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且或者最后一层是满的,或者是在右边缺少连续若干结点,则此二叉树为完全二叉树。
具有n个结点的完全二叉树的深度为floor(log2n)+1。深度为k的完全二叉树,至少有2k-1个叶子结点,至多有2k-1个结点。
扩展资料
二叉树性质:
1、有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
若I为结点编号则 如果I>1,则其父结点的编号为I/2;
如果2*I<=N,则其左孩子(即左子树的根结点)的编号为2*I;若2*I>N,则无左孩子;
如果2*I+1<=N,则其右孩子的结点编号为2*I+1;若2*I+1>N,则无右孩子。
2、对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
3、给定N个结点,能构成h(N)种不同的二叉树。
h(N)为卡特兰数的第N项。h(n)=C(2*n,n)/(n+1)。
他们的关系是
叶子结点个数=度为2的结点个数+1
详细请参见数据结构
{
if(!T) return 0; /*空树没有叶子*/
else if(!T->lchild&&!T->rchild) return 1; /*叶子结点*/
else return Leaf_Count(T->lchild)+Leaf_Count(T->rchild);/*左子树的叶子数加上右子树的叶子数*/
}/*LeafCount_BiTree */
按照这个算