e^t^2怎么积分?《急用》 40

 我来答
轮看殊O
高粉答主

2019-04-29 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:801万
展开全部

两次用分部积分法,再解出.

∫e^t(sint)^2dt=e^t(sint)^2-∫e^tsin2tdt

∵∫e^tsin2tdt=e^tsin2t-2∫e^tcos2tdt

=e^tsin2t-2e^tcos2t-4∫e^tsin2tdt

∴5∫e^tsin2tdt=e^tsin2t-2e^tcos2t

∫e^tsin2tdt=1/5e^tsin2t-2/5e^tcos2t

∴ ∫e^t(sint)^2dt=e^t(sint)^2-1/5e^tsin2t+2/5e^tcos2t+C

扩展资料

E(x2)这个积分要化为二重积分才能做

∫∫e^x2e^y2dxdy

=∫∫e^(x2+y2)dxdy

再运用极坐标变换

r^2=x^2+y^2 

dxdy=rdrdθ

∫∫e^(x2+y2)dxdy

=∫∫e^r^2*rdrdθ (注意到θ∈[0,2π])

=1/2e^r^2*2π

=πe^r^2+C

所以

∫e^x2dx=√(πe^r^2+C)

由于没有限定上下限,所以是没有办法求出来具体的C值及积分的值。

你爱我妈呀
2019-05-24 · TA获得超过8.6万个赞
知道小有建树答主
回答量:686
采纳率:100%
帮助的人:28.2万
展开全部

两次用分部积分法,再解出。求解过程如下:

∫e^t(sint)^2dt=e^t(sint)^2-∫e^tsin2tdt

∵∫e^tsin2tdt=e^tsin2t-2∫e^tcos2tdt

=e^tsin2t-2e^tcos2t-4∫e^tsin2tdt

∴5∫e^tsin2tdt=e^tsin2t-2e^tcos2t

∫e^tsin2tdt=1/5e^tsin2t-2/5e^tcos2t

∴ ∫e^t(sint)^2dt=e^t(sint)^2-1/5e^tsin2t+2/5e^tcos2t+C

扩展资料:

分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu。

两边积分,得分部积分公式∫udv=uv-∫vdu。

常用不定积分公式

1、∫kdx=kx+C。

2、∫x^ndx=[1/(n+1)]x^(n+1)+C。

3、∫a^xdx=a^x/lna+C。

4、∫sinxdx=-cosx+C。

5、∫cosxdx=sinx+C。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2017-10-18
展开全部
两次用分部积分法,再解出.
∫e^t(sint)^2dt=e^t(sint)^2-∫e^tsin2tdt
∵∫e^tsin2tdt=e^tsin2t-2∫e^tcos2tdt
=e^tsin2t-2e^tcos2t-4∫e^tsin2tdt
∴5∫e^tsin2tdt=e^tsin2t-2e^tcos2t
∫e^tsin2tdt=1/5e^tsin2t-2/5e^tcos2t
∴ ∫e^t(sint)^2dt=e^t(sint)^2-1/5e^tsin2t+2/5e^tcos2t+C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zyx091
2013-08-03 · TA获得超过1179个赞
知道小有建树答主
回答量:709
采纳率:0%
帮助的人:787万
展开全部
这个的原函数不是初等函数,不定积分求不了的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式