![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
e^t^2怎么积分?《急用》 40
两次用分部积分法,再解出.
∫e^t(sint)^2dt=e^t(sint)^2-∫e^tsin2tdt
∵∫e^tsin2tdt=e^tsin2t-2∫e^tcos2tdt
=e^tsin2t-2e^tcos2t-4∫e^tsin2tdt
∴5∫e^tsin2tdt=e^tsin2t-2e^tcos2t
∫e^tsin2tdt=1/5e^tsin2t-2/5e^tcos2t
∴ ∫e^t(sint)^2dt=e^t(sint)^2-1/5e^tsin2t+2/5e^tcos2t+C
扩展资料
E(x2)这个积分要化为二重积分才能做
∫∫e^x2e^y2dxdy
=∫∫e^(x2+y2)dxdy
再运用极坐标变换
r^2=x^2+y^2
dxdy=rdrdθ
∫∫e^(x2+y2)dxdy
=∫∫e^r^2*rdrdθ (注意到θ∈[0,2π])
=1/2e^r^2*2π
=πe^r^2+C
所以
∫e^x2dx=√(πe^r^2+C)
由于没有限定上下限,所以是没有办法求出来具体的C值及积分的值。
两次用分部积分法,再解出。求解过程如下:
∫e^t(sint)^2dt=e^t(sint)^2-∫e^tsin2tdt
∵∫e^tsin2tdt=e^tsin2t-2∫e^tcos2tdt
=e^tsin2t-2e^tcos2t-4∫e^tsin2tdt
∴5∫e^tsin2tdt=e^tsin2t-2e^tcos2t
∫e^tsin2tdt=1/5e^tsin2t-2/5e^tcos2t
∴ ∫e^t(sint)^2dt=e^t(sint)^2-1/5e^tsin2t+2/5e^tcos2t+C
扩展资料:
分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu。
两边积分,得分部积分公式∫udv=uv-∫vdu。
常用不定积分公式
1、∫kdx=kx+C。
2、∫x^ndx=[1/(n+1)]x^(n+1)+C。
3、∫a^xdx=a^x/lna+C。
4、∫sinxdx=-cosx+C。
5、∫cosxdx=sinx+C。
推荐于2017-10-18
∫e^t(sint)^2dt=e^t(sint)^2-∫e^tsin2tdt
∵∫e^tsin2tdt=e^tsin2t-2∫e^tcos2tdt
=e^tsin2t-2e^tcos2t-4∫e^tsin2tdt
∴5∫e^tsin2tdt=e^tsin2t-2e^tcos2t
∫e^tsin2tdt=1/5e^tsin2t-2/5e^tcos2t
∴ ∫e^t(sint)^2dt=e^t(sint)^2-1/5e^tsin2t+2/5e^tcos2t+C