1个回答
展开全部
由a, b, c为实数, a²+b² = 4, b²+c² = 8,
有0 ≤ (a+√2·b+c)² = a²+2b²+c²+2√2·ab+2√2·bc+2ca = 12+2√2(ab+bc+√2/2·ca).
故ab+bc+√2/2·ca ≥ -12/(2√2) = -3√2.
等号成立当且仅当a+√2·b+c = 0.
下面说明方程组a²+b² = 4, b²+c² = 8, a+√2·b+c = 0在实数范围内有解.
只需说明√(4-b²)+√2·b+√(8-b²) = 0在[-2,2]中有解.
由f(x) = √(4-x²)+√2·x+√(8-x²)连续, 又f(-2) = 2-2√2 < 0, f(0) = 2+2√2 > 0,
f(x) = 0在(-2,0)中有解.
于是ab+bc+√2/2·ca ≥ -3√2能够成立等号, ab+bc+√2/2·ca的最小值就是-3√2.
有0 ≤ (a+√2·b+c)² = a²+2b²+c²+2√2·ab+2√2·bc+2ca = 12+2√2(ab+bc+√2/2·ca).
故ab+bc+√2/2·ca ≥ -12/(2√2) = -3√2.
等号成立当且仅当a+√2·b+c = 0.
下面说明方程组a²+b² = 4, b²+c² = 8, a+√2·b+c = 0在实数范围内有解.
只需说明√(4-b²)+√2·b+√(8-b²) = 0在[-2,2]中有解.
由f(x) = √(4-x²)+√2·x+√(8-x²)连续, 又f(-2) = 2-2√2 < 0, f(0) = 2+2√2 > 0,
f(x) = 0在(-2,0)中有解.
于是ab+bc+√2/2·ca ≥ -3√2能够成立等号, ab+bc+√2/2·ca的最小值就是-3√2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询