解题过程,谢谢
1个回答
展开全部
性质1:直角三角形两直角边的平方和等于斜边的平方。
性质2:在直角三角形中,两个锐角互余。
性质3:在直角三角形中,斜边上的中线等于斜边的一半。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)×2=BD·DC,
(2)(AB)×2=BD·BC , 射影定理图
(3)(AC)×2=CD·BC 。 等积式
(4)ABXAC=ADXBC (可用面积来证明)
(5)直角三角形的外接圆的半径R=1/2BC,
(6)直角三角形的内切圆的半径r=1/2(AB+AC-BC)(公式一);r=AB*AC/(AB+BC+CA)(公式二)
追答
:△ABC为等边三角形.理由如下:
∵a2+b2+c2-ab-bc-ac=0,
∴2a2+2b2+2c2-2ab-2bc-2ac=0,
∴a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0,
即(a-b)2+(b-c)2+(c-a)2=0,
∴a-b=0,b-c=0,c-a=0,
∴a=b=c,
∴△ABC为等边三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询