设y=x2+ax+b,A={x|y=x}={a},m={a,b} 求m
2013-08-04
展开全部
解:y=x�0�5+ax+b
A={x|y=x}={a}
说明方程x�0�5+ax+b=x有唯一的实数根a
那么由韦达定理有a+a=1-a, a*a=b
所以a=1/3,b=1/9
故M={(1/3,1/9)}
A={x|y=x}={a}
说明方程x�0�5+ax+b=x有唯一的实数根a
那么由韦达定理有a+a=1-a, a*a=b
所以a=1/3,b=1/9
故M={(1/3,1/9)}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-04
展开全部
貌似不是初中的知识,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-04
展开全部
初中的知识
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询