求证:(1/n)+(1/n+1)+(1/n+2)+……+(1/n²)>1(n∈N+,且n≥2)
展开全部
放缩法
1/(n+1) > 1/n^2
1/(n+2) > 1/n^2
....
1/(n^2-1) > 1/n^2
1/n^2 = 1/n^2 左右分别相加,共 n^2 -n 项,因n>1, n^2-n >=2,
所以
1/(n+1)+1/(n+2) +……+1/n^2 > (n^2-n)/n^2 =1- 1/n
把-1/n移项到左边,得到:
1/n+1/(n+1)+1/(n+2) +……+1/n^2 > 1 得证。
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答,请选为满意答案,并点击好评,谢谢!
1/(n+1) > 1/n^2
1/(n+2) > 1/n^2
....
1/(n^2-1) > 1/n^2
1/n^2 = 1/n^2 左右分别相加,共 n^2 -n 项,因n>1, n^2-n >=2,
所以
1/(n+1)+1/(n+2) +……+1/n^2 > (n^2-n)/n^2 =1- 1/n
把-1/n移项到左边,得到:
1/n+1/(n+1)+1/(n+2) +……+1/n^2 > 1 得证。
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答,请选为满意答案,并点击好评,谢谢!
展开全部
1/n+1/(n+1)+1/(n+2)+······+1/n^2
=1/n+[1/(n+1)+1/(n+3)+······+1/(2n)]
+[1/(2n+1)+1/(2n+2)+1/(2n+3)+······+1/(3n)]
+[1/(3n+1)+1/(3n+2)+1/(3n+3)+······+1/(4n)]
+······
+[1/(n^2-n+1)+1/(n^2-n+2)+1/(n^2-n+3)+······+1/(n^2)]
>1/n+n·[1/(n^2-n+1)+1/(n^2-n+2)+1/(n^2-n+3)+······+1/(n^2)]
>1/n+n·[n·(1/n^2)]
=1+1/n
>1。
即:1/n+1/(n+1)+1/(n+2)+······+1/n^2>1,其中n为不小于2的正整数。
=1/n+[1/(n+1)+1/(n+3)+······+1/(2n)]
+[1/(2n+1)+1/(2n+2)+1/(2n+3)+······+1/(3n)]
+[1/(3n+1)+1/(3n+2)+1/(3n+3)+······+1/(4n)]
+······
+[1/(n^2-n+1)+1/(n^2-n+2)+1/(n^2-n+3)+······+1/(n^2)]
>1/n+n·[1/(n^2-n+1)+1/(n^2-n+2)+1/(n^2-n+3)+······+1/(n^2)]
>1/n+n·[n·(1/n^2)]
=1+1/n
>1。
即:1/n+1/(n+1)+1/(n+2)+······+1/n^2>1,其中n为不小于2的正整数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1/n+1)+(1/n+2)+……+(1/2n)>n*(1/2n)=1/2;
(1/2n+1)+(1/2n+2)+……+(1/3n)>n*(1/3n)=1/3;
……
(1/n(n-1)+1)+(1/n(n-1)+2)+……+(1/n²)>n*(1/n²)=1/n
所以::(1/n)+(1/n+1)+(1/n+2)+……+(1/n²)>1/n+1/2+1/3……1/n
又因为n>=2;
故:(1/n)+(1/n+1)+(1/n+2)+……+(1/n²)>1/n+1/2+1/3……1/n >1;
(1/2n+1)+(1/2n+2)+……+(1/3n)>n*(1/3n)=1/3;
……
(1/n(n-1)+1)+(1/n(n-1)+2)+……+(1/n²)>n*(1/n²)=1/n
所以::(1/n)+(1/n+1)+(1/n+2)+……+(1/n²)>1/n+1/2+1/3……1/n
又因为n>=2;
故:(1/n)+(1/n+1)+(1/n+2)+……+(1/n²)>1/n+1/2+1/3……1/n >1;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
请问作者这个数列有多少项
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询