函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数
分析:很明显f(x)是周期函数(下面会证明其周期T=4).又∵f(x+1)与f(x-1)都是奇函数,∴f(x)图像关于(-1,0)和(1,0)这两个点对称(f(x)的对称中心可由课本上的奇函数图像平移得到哦).您可以画个草图,如果一个函数在x轴上有多个对称中心,而且又是周期函数,一般可以把f(x)的草图特殊化变成正余弦函数图像研究其性质.如果f(x)图像关于(-1,0)和(1,0)这两个点对称,且周期为4,那么画出来的草图只能保证一定有T=4,而T=2是有可能而不一定绝对会发生的事情.同样画图可知f(x)的奇偶性是不确定的.假设f(x)是个正弦形式的函数,当它的一个最高点经过y轴时,它是一个偶函数;当它的另外一个对称中心在原点时,它是一个奇函数.而上面2种情况都满足题意,所以不能确定f(x)的奇偶性.这是利用把问题特殊化的方法结合图像反证得到的.所以A和B不能选.C选项也只是有可能,不能一定成立,所以也不能选.用排除法可以确定D选项为正确答案.
解答:满足f(x+1)与f(x-1)都是奇函数的f(x)有f(x)=sin(πx)和f(x)=cos(πx/2).上面所举的2个特例一奇一偶,都符合题意,所以A和B都错.这2个反例函数的图像见下图,他们都关于(-1,0)和(1,0)这两个点对称.
①f(x+1)是奇函数→f(-x+1)=-f(x+1)
②f(x-1)是奇函数→f(-x-1)=-f(x-1)
由①②得:
-f(x)=-f[(x+1)-1]=f[-(x+1)-1]=f(-x-2)
f(x)=-f(-x-2)=-f[(-x-3)+1]}=f[-(-x-3)+1]=f(x+4)
只能推出f(x)=f(x+4),故C选项“f(x)=f(x+2)”错.
③f(x+3)=f[(x+2)+1]=-f[-(x+2)+1]=-f[(-x)-1]=f(x-1)
④-f(-x+3)=-f[-(x-2)+1]=f[(x-2)+1]=f(x-1)
由③④可知f(-x+3)=-f(x+3),故D选项“f(x+3)是奇函数”对.
2013-08-04