1~10的阶乘(!)分别是多少?
1~10的阶乘的结果如下:
1!=1
2!=2*1=2
3!=3*2*1=6
4!=4*3*2*1=24
5!=5*4*3*2*1=120
6!=6*5*4*3*2*1=720
7!=7*6*5*4*3*2*1=5040
8!=8*7*6*5*4*3*2*1=40320
9!=9*8*7*6*5*4*3*2*1=362880
10!=10*9*8*7*6*5*4*3*2*1=3628800
扩展资料:
1、阶乘是数学术语,是由基斯顿·卡曼于 1808 年发明的运算符号。
一个正整数的阶乘等于所有小于及等于该数的正整数的乘积,并且0的阶乘为1。自然数n的阶乘写作n!。
2、阶乘计算的公式
(1)n的阶乘用公式表示为:n!=1*2*3*......*(n-1)*n,其中n≥1。
(2)当n=0时,n!=0!=1
参考资料来源:百度百科-阶乘
1~10的阶乘如下:
1!=1
2!=2
3!=6
4!=24
5!=120
6!=720
7!=5040
8!=40320
9!=362880
10!=3628800
扩展资料:
0!=1。由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是0。所以用正整数阶乘的定义是无法推广或推导出0!=1的。即在连乘意义下无法解释“0!=1”。给“0!”下定义只是为了相关公式的表述及运算更方便。
对于复数应该是指所有模n小于或等于│n│的同余数之积。对于任意实数n的规范表达式为:
正数 n=m+x,m为其正数部,x为其小数部。
负数n=-m-x,-m为其正数部,-x为其小数部。
对于纯复数
n=(m+x)i,或n=-(m+x)i
拓展阶乘到纯复数:
正实数阶乘: n!=│n│!=n(n-1)(n-2)....(1+x).x!=(i^4m).│n│!
负实数阶乘: (-n)!=cos(mπ)│n│!=(i^2m)..n(n-1)(n-2)....(1+x).x!
(ni)!=(i^m)│n│!=(i^m)..n(n-1)(n-2)....(1+x).x!
(-ni)!=(i^3m)│n│!=(i^3m)..n(n-1)(n-2)....(1+x).x!
1!=1
2!=1*2或2!=2*(2-1)!
3!=1*2*3或3!=3*(3-1)!
4!=1*2*3*4或4!=4*(4-1)!
5!=1*2*3*4*5或5!=5*(5-1)!
6!=1*2*3*4*5*6或6!=6*(6-1)!
7!=1*2*3*4*5*6*7或7!=7*(7-1)!
8!=1*2*3*4*5*6*7*8或8!=8*(8-1)!
9!=1*2*3*4*5*6*7*8*9或9!=9*(9-1)!
10!=1*2*3*4*5*6*7*8*9*10或10!=10*(10-1)!
任何大于等于1 的自然数n 阶乘表示方法:n!=1*2*3*...(n-1)n或n!=n*(n-1)!
扩展资料
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的
阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是0。所以用正整数阶乘的定义是
无法推广或推导出0!=1的。即在连乘意义下无法解释“0!=1”。
参考资料:百度百科-阶乘
1~10的阶乘如下:
1!=1
2!=2
3!=6
4!=24
5!=120
6!=720
7!=5040
8!=40320
9!=362880
10!=3628800
1!=1
2!=2*1=2
3!=3*2*1=6
4!=4*3*2*1=24
5!=5*4*3*2*1=120
6!=6*5*4*3*2*1=720
7!=7*6*5*4*3*2*1=5040
8!=8*7*6*5*4*3*2*1=40320
9!=9*8*7*6*5*4*3*2*1=362880
10!=10*9*8*7*6*5*4*3*2*1=3628800
扩展资料:
1、阶乘是数学术语,是由基斯顿·卡曼于 1808 年发明的运算符号。
一个正整数的阶乘等于所有小于及等于该数的正整数的乘积,并且0的阶乘为1。自然数n的阶乘写作n!。
2、阶乘计算的公式
(1)n的阶乘用公式表示为:n!=1*2*3*......*(n-1)*n,其中n≥1。
(2)当n=0时,n!=0!=1