
1个回答
展开全部
你好!
请问f(x)是不是奇函数。你说的是“奇数”
f(x)=(bx+c)/(ax^2+1) ???
那么c=0
即f(X)=bx/(ax^2+1)=b/(ax+1/x)
因为a>0
所以由均值不等式:ax+1/x>=2根号a
f(x)min=b/2根号a=-1/2
即b^2=a
所以f(x)=b/(b^2x+1/x)
f(1)=b/(b^2+1)>2/5
整理得到,2b^2+2<5b
2b^2-5b+2<0
(2b-1)(b-2)<0
1/2<b<2
请问f(x)是不是奇函数。你说的是“奇数”
f(x)=(bx+c)/(ax^2+1) ???
那么c=0
即f(X)=bx/(ax^2+1)=b/(ax+1/x)
因为a>0
所以由均值不等式:ax+1/x>=2根号a
f(x)min=b/2根号a=-1/2
即b^2=a
所以f(x)=b/(b^2x+1/x)
f(1)=b/(b^2+1)>2/5
整理得到,2b^2+2<5b
2b^2-5b+2<0
(2b-1)(b-2)<0
1/2<b<2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |