求此道大题得详细解答过程,一定要非常详细。别废话,直接上过程!,

刀安容75
2013-08-05 · 超过17用户采纳过TA的回答
知道答主
回答量:64
采纳率:0%
帮助的人:41.5万
展开全部
因为对任意的a,b∈R都满足f(a*b)=af(b)+bf(a),
取a=b=1,得
f(1)=f(1)+f(1)
所以f(1)=0
取a=b=-1
f(1)=-2f(-1)=0
f(-1)=0
再取
a=x,b=-1
f(-x)=xf(-1)+(-1)f(x)=-f(x)
f(-x)+f(x)=0
因为f(x)是定义在R上的不恒为零的函数,
所以
函数为奇函数!
追答
1 
令a=b=1.由f(ab)=af(b)+bf(a)
f(1)=f(1)+f(1) 即 f(1)=0
令a=b=0.由f(ab)=af(b)+bf(a) f(0)=0
2
根据F(ab)=bF(a)+aF(b),设a=b=1 得出F(1)=0 在设a=b=-1 得出F(-1)=0

F(-ab)=bF(-a)-aF(b),F(-a)可以看成F(-1*a) 所以F(-a)=-F(a)+aF(-1)
所以F(-ab)=bF(-a)-aF(b)=-bF(a)+abF(-1)-aF(b)
根据F(ab)=bF(a)+aF(b),设a=b=1 得出F(1)=0 在设a=b=-1 得出F(-1)=0 所以abF(-1)=0
所以F(-ab)=bF(-a)-aF(b)=-bF(a)+abF(-1)-aF(b)=-bF(a)+0-aF(b)=-《bF(a)+aF(b)》=-F(ab) 所以奇偶性是奇
望采纳
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式