若存在k∈【-根号2/2,根号2/2】是a(1+k²)≤|k|根号下1-k平方成立,则实数a的取值范围是 跪求过程
1个回答
展开全部
a(1+k^2)<|k|√(1-k^2)→a<[|k|√(1-k^2)]/(1+k^2)
使f(k)=[|k|√(1-k^2)]/(1+k^2)
f²(k)=k²(1-k²)/(1+k²)²
1+k²=t∈[1,3/2],k²=t-1
∴f²(k)=(t-1)(2-t)/t²
=(-t²+3t-2)/t²
=-2/t²+3/t-1
=-2(1/t²-3/2*t+9/16)+1/8
=-2(1/t-3/4)²+1/8
∵1/t∈[2/3,1]
∴1/t=3/4时,f²(k)max=1/8
1/t=1时,f²(k)min=0
∴f(k)max=√2/4
∴a<√2/4
使f(k)=[|k|√(1-k^2)]/(1+k^2)
f²(k)=k²(1-k²)/(1+k²)²
1+k²=t∈[1,3/2],k²=t-1
∴f²(k)=(t-1)(2-t)/t²
=(-t²+3t-2)/t²
=-2/t²+3/t-1
=-2(1/t²-3/2*t+9/16)+1/8
=-2(1/t-3/4)²+1/8
∵1/t∈[2/3,1]
∴1/t=3/4时,f²(k)max=1/8
1/t=1时,f²(k)min=0
∴f(k)max=√2/4
∴a<√2/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询