初中数学题——相似三角形

已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F。求证:BE²=EF·EG已知:AD是Rt△ABC中∠BAC的平... 已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F。求证:BE²=EF·EG
已知:AD是Rt△ABC中∠BAC的平分线,∠ACB=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点M。求证:(1)△AME∽△NMD (2)ND²=NC·NB

在△ABC中,AB=AC,高AD与BE交于H,EF⊥BC,垂足为F,延长AD到G,使DG=EF,M是AH的中点。求证:∠GBM=90°

要详解。希望会的人帮忙解答一下,谢谢了。急~
展开
百度网友6cb457d
2013-08-06 · TA获得超过106个赞
知道答主
回答量:99
采纳率:0%
帮助的人:66万
展开全部

第一题:

连接ec,先证ec=be

然后因为∠1=∠2=∠3且∠cef是三角形ecg和efc的公共角

所以△ecg和△efc相似 ef/ec=ec/eg

得be²=ec²=ef·eg

第二题:

(1):易知∠5=∠6

因为∠adc+∠1=90°,∠adc+∠4+90°所以∠1=∠4

所以∠2=∠1=∠4

∠5=∠6且∠2=∠4△AME∽△NMD

(2):因为垂直平分线所以na=nd

∠1+∠7=∠adc,∠2=∠4

所以∠1+∠2+∠7=∠4+∠adc=90°

又因为∠nca=90°易证△nab相似△nca

nc/na=na/nb

得na²=nc·nb所以ND²=NC·NB

第三题:帮你找了两种做法


要证∠MBG=90°,只要证∆GBD~∆GMB,

即BG^2=DG×MG=DG(MD+DG)↔

BG^2=BD^2+DG^2=DG(MD+DG)=DG^2+DG×MD

↔BD^2=DG×MD=EF×1/2(AD+HD)

又BD^2=1/4 BC^2

AD+HD=DCtanC+BDcot∠BHD=1/2 BC(tanC+cotC)

EF=CE sinC=BCcosC sinC 

EF×1/2 (AD+HD)=BC cosC sinC×1/2×1/2 BC(tanC+cotC)=

1/4 BC^2 (sin^2 (C)+ cos^2(C))=1/4 BC^2

故BD^2=EF×1/2(AD+HD),证毕!


设AB=a,BC=b则
因为AD⊥BC,由勾股定理得
AD =√ (AB^2-BD^2)=√[a^2-(b/2)^2]
因为AD⊥BC,BE⊥AC,由三角形面积公式得
BE=AD*BC/AC=b/a *√[a^2-(b/2)^2]
因为BE⊥AC,由勾股定理得
CE =√(BC^2-BE^2)=b^2/(2a)
由AD⊥BD,BE⊥EC易知△BDH与△BEC相似,所以
HD=BD*CE/BE=b^2* √[a^2-(b/2)^2]/{4*[a^2-(b/2)^2]}
所以
AH=AD-HD=(4*a^2-2b^2)* √[a^2-(b/2)^2]/{4*[a^2-(b/2)^2]}
由AM=MH知
MH=AH/2=(2*a^2-b^2)* √[a^2-(b/2)^2]/{4*[a^2-(b/2)^2]}
因为EF⊥BC,BE⊥EC,DG=EF,由三角形面积公式得
DG=EF=BE*CE/BC=b^2/(2*a^2) *√[a^2-(b/2)^2]
所以
MD=MH+HD=2*a^2* √[a^2-(b/2)^2]/{4*[a^2-(b/2)^2]}
所以
MD*DG=b^2/4=BD^2 (这是直角△斜边上的高的计算公式)
又因为BD⊥MG
所以△MBG是直角△
所以BG⊥BM
如果觉得直角△斜边高公式没学过,可以由
MD*DG=BD^2
证明△BDM与△GDB相似
所以∠MBD=∠BGD
又因为BD⊥MG
所以∠BDM=90度
所以∠MBG=∠MBD+∠GBD=∠BGD+∠GBD=180度-∠BDM=90度
所以BG⊥BM

无所谓的文库
2013-08-05 · TA获得超过1.9万个赞
知道大有可为答主
回答量:2178
采纳率:97%
帮助的人:888万
展开全部

1、


2、

(1)

证明:

∵∠ACB=90度
∴∠ADC十∠CAD=90度
∵EF垂直AD于M,∠AME=90度
∴∠AEM十∠BAD=90度
∵AD平分∠BAC
∴∠CAD=∠BAD
又∵∠NMD=∠AME
∴△AME∽△MND
(2)

证明:

连结DE、DF
∵EF是AD的垂直平分线
∴AE=DE,AF=DF
∴∠ADE=∠DAE,∠ADF=∠DAF
∵AD平分∠BAC
∴∠DAE=∠DAF
∴∠DAE=∠ADF,∠DAF=∠ADE
∴AB\\FD,AC\\ED
∴NB/ND=NE/NF,ND/NC=NE/NF
∴NB/ND=ND/NC
∴ND²=NC•NB

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
veron654321
2013-08-06 · 超过143用户采纳过TA的回答
知道小有建树答主
回答量:552
采纳率:0%
帮助的人:260万
展开全部
解答:证明:连接CE,如右图所示,
∵AB=AC,AD⊥BC,
∴AD是∠BAC的角平分线,
∴BE=CE,
∴∠EBC=∠ECB,
又∵∠ABC=∠ACB,
∴∠ABC-∠EBC=∠ACB-∠ECB,
即∠ABE=∠ACE,
又∵CG∥AB,
∴∠ABE=∠CGF,
∴∠CGF=∠FCE,
又∠FEC=∠CEG,
∴△CEF∽△GEC,
∴CE:EF=EG:CE,
即CE2=EF•EG,
又CE=BE,
∴BE2=EF•EG.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式