高中数学,谢谢
3个回答
展开全部
(1) f'(x)=2x+xcosx=x(2+cosx),
因为y=b的斜率为0,
所以 f'(a)=a(2+cosa)=0,
而 2+cosa>0恒成立,所以 a=0;
这时,b=f(a)=f(0)=1
所以 a=0 , b=1.
(2)由(1)知,x<0 , f'(x)<0, f(x)单调减;
x>0 , f'(x)>0, f(x)单调增,
所以 f(x) 在 x=0 取得最小值 f(0)=1,
所以,当 b>1 时,曲线y=f(x)与直线y=b有两个不同的交点.
因为y=b的斜率为0,
所以 f'(a)=a(2+cosa)=0,
而 2+cosa>0恒成立,所以 a=0;
这时,b=f(a)=f(0)=1
所以 a=0 , b=1.
(2)由(1)知,x<0 , f'(x)<0, f(x)单调减;
x>0 , f'(x)>0, f(x)单调增,
所以 f(x) 在 x=0 取得最小值 f(0)=1,
所以,当 b>1 时,曲线y=f(x)与直线y=b有两个不同的交点.
展开全部
1 a=0,b=1
2 b>1
2 b>1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-06 · 知道合伙人教育行家
无脚鸟╰(⇀‸↼)╯
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:6742
获赞数:132164
现在为上海海事大学学生,在学习上有一定的经验,擅长数学。
向TA提问 私信TA
关注
展开全部
(1) f'(x)=2x+xcosx=x(2+cosx),
因为y=b的斜率为0,
所以 f'(a)=a(2+cosa)=0,
而 2+cosa>0恒成立,所以 a=0;
这时,b=f(a)=f(0)=1
所以 a=0 , b=1.
(2)由(1)知,x<0 , f'(x)<0, f(x)单调减;
x>0 , f'(x)>0, f(x)单调增,
所以 f(x) 在 x=0 取得最小值 f(0)=1,
所以,当 b>1 时,曲线y=f(x)与直线y=b有两个不同的交点.
因为y=b的斜率为0,
所以 f'(a)=a(2+cosa)=0,
而 2+cosa>0恒成立,所以 a=0;
这时,b=f(a)=f(0)=1
所以 a=0 , b=1.
(2)由(1)知,x<0 , f'(x)<0, f(x)单调减;
x>0 , f'(x)>0, f(x)单调增,
所以 f(x) 在 x=0 取得最小值 f(0)=1,
所以,当 b>1 时,曲线y=f(x)与直线y=b有两个不同的交点.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询