三角形ABC中,角ABC=100度,角ACB=20度,CE平分角ACB,角CBD=20度,求角ADE的度数。
2个回答
展开全部
楼主您好:
解法一:
作EF⊥CB交CB延长线于F作EH⊥DB于H,EG⊥AD于G
证出△EHD于△EGD全等(有一点麻烦)则∠EDH等于角EDG又角ADB=∠ACB+∠CBD=20+20=40=2∠GDE所以角GDE=20又∠ECD+∠CED=∠GDE=20∴∠CED=20-∠ECG=2O-10=10即∠CED=10度
解法二:
CE是角ACB的平分线,所以DB=DC,设DB=DC=a 由角平分线定理得:AE/AB=AC/(AC+CB)
由正玄定理得:BC=2a*cos20度 AC=2a*cos20度*sin80度/sin60度 AB=a*sin40度/sin60度
AE=a*sin20/度sin60度 AD=a*sin80度/sin60度
DE的平方=AE平方+AD平方-2AE*ADcos60度=a平方 ,DE=a
sin角ADE=(AE/DE)*sin60度=sin20度
所以,角ADE==20度
祝楼主学习进步
解法一:
作EF⊥CB交CB延长线于F作EH⊥DB于H,EG⊥AD于G
证出△EHD于△EGD全等(有一点麻烦)则∠EDH等于角EDG又角ADB=∠ACB+∠CBD=20+20=40=2∠GDE所以角GDE=20又∠ECD+∠CED=∠GDE=20∴∠CED=20-∠ECG=2O-10=10即∠CED=10度
解法二:
CE是角ACB的平分线,所以DB=DC,设DB=DC=a 由角平分线定理得:AE/AB=AC/(AC+CB)
由正玄定理得:BC=2a*cos20度 AC=2a*cos20度*sin80度/sin60度 AB=a*sin40度/sin60度
AE=a*sin20/度sin60度 AD=a*sin80度/sin60度
DE的平方=AE平方+AD平方-2AE*ADcos60度=a平方 ,DE=a
sin角ADE=(AE/DE)*sin60度=sin20度
所以,角ADE==20度
祝楼主学习进步
更多追问追答
追问
我问的是角ADE
追答
第二种解法
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询