设△ABC内角ABC 所对的边分别为abc,且acosB-bcosA=3/5 求tanA/tanB的值
2个回答
展开全部
∵acosB-bcosA=(3/5)×c
且,a/sinA=b/sinB=c/sinC
∴sinAcosB-sinBcosA
=(3/5)×sinC
=(3/5)×sin(A+B)
=(3/5)×(sinAcosB+cosAsinB)
∴(2/5)×sinAcosB=(8/5)×cosAsinB
∴(sinAcosB)/(cosAsinB)
=(8/5)/(2/5)
=4
又,(sinAcosB)/(cosAsinB)
=(sinA/cosA)/(sinB/cosB)
=(tanA)/(tanB)
∴tanA/tanB=4
且,a/sinA=b/sinB=c/sinC
∴sinAcosB-sinBcosA
=(3/5)×sinC
=(3/5)×sin(A+B)
=(3/5)×(sinAcosB+cosAsinB)
∴(2/5)×sinAcosB=(8/5)×cosAsinB
∴(sinAcosB)/(cosAsinB)
=(8/5)/(2/5)
=4
又,(sinAcosB)/(cosAsinB)
=(sinA/cosA)/(sinB/cosB)
=(tanA)/(tanB)
∴tanA/tanB=4
追问
acosB-bcosA=(3/5)×c ??
原题是acosB-bcosA=3/5
我们试卷上的题目是这个 我前几次搜过答案 都是这样的(acosB-bcosA=(3/5)×c ) 麻烦你重新做一下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询