对称区间上奇偶函数的定积分
两个问题对(2)如何证明在(3)中说“f(x)在[-a,a]的全体原函数为偶函数”,我想问:在区间上的积分为定积分,而定积分是个数值,并不是函数,书上是不是表达的有问题啊...
两个问题
对(2)如何证明
在(3)中说“f(x)在[-a,a]的全体原函数为偶函数”,我想问:在区间上的积分为定积分,而定积分是个数值,并不是函数,书上是不是表达的有问题啊?这个到底是要表达什么意思呢?如果是说fx的不定积分的原函数是偶函数的话,那为什么还要强调是在[-a,a]这个对称区间上呢? 展开
对(2)如何证明
在(3)中说“f(x)在[-a,a]的全体原函数为偶函数”,我想问:在区间上的积分为定积分,而定积分是个数值,并不是函数,书上是不是表达的有问题啊?这个到底是要表达什么意思呢?如果是说fx的不定积分的原函数是偶函数的话,那为什么还要强调是在[-a,a]这个对称区间上呢? 展开
3个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
可用变量穗凯代换法证明神族则奇函数对称区间定积分为0
令-u=x
则dx=-du
x^3在[-3,3]上的积分变为u^3在[3,-3](游棚等价于-x^3在[-3,3])上的积分
因为用的是变量代换
所以x^3在[-3,3]上的积分=-x^3在[-3,3]上的积分
所以x^3在[-3,3]上的积分=0
令-u=x
则dx=-du
x^3在[-3,3]上的积分变为u^3在[3,-3](游棚等价于-x^3在[-3,3])上的积分
因为用的是变量代换
所以x^3在[-3,3]上的积分=-x^3在[-3,3]上的积分
所以x^3在[-3,3]上的积分=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第二问笑宴题目有点乱,顺序乱七八糟的;第三问表达是没有问题的,在区间上的积键升袭分是定积分,但这个定积分中含有自变稿兄量X,所以是个关于自变量X的函数,你想想看他的原函数有很多,如那个定积分+C,C不等于0是就不是奇函数了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询