定义在对称区间上的任何函数都可以唯一的表示成一个偶函数和一个奇函数之和中
展开全部
证明如下:
设任一定义在关於原点对称的区间的函数F(x)
再设G(x)=F(-x)
令f(x)=F(x)+G(x), g(x)=F(x)-G(x)
则有:f(x)-f(-x)=F(x)+G(x)-[F(-x)+G(-x)]=F(x)+F(-x)-F(x)-F(-x)=0
故f(x)为偶函数
同理:g(x)+g(-x)=F(x)-G(x)+[F(-x)-G(-x)]=F(x)-F(-x)+F(x)-F(-x)=0
故g(x)奇为函数
於是F(x)就可以表示为:
F(x)=[f(x)+g(x)]/2,其中f(x),g(x)分别为偶函数和奇函数
设任一定义在关於原点对称的区间的函数F(x)
再设G(x)=F(-x)
令f(x)=F(x)+G(x), g(x)=F(x)-G(x)
则有:f(x)-f(-x)=F(x)+G(x)-[F(-x)+G(-x)]=F(x)+F(-x)-F(x)-F(-x)=0
故f(x)为偶函数
同理:g(x)+g(-x)=F(x)-G(x)+[F(-x)-G(-x)]=F(x)-F(-x)+F(x)-F(-x)=0
故g(x)奇为函数
於是F(x)就可以表示为:
F(x)=[f(x)+g(x)]/2,其中f(x),g(x)分别为偶函数和奇函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |