乘法的含义
乘法含义:
1、“求几个相同加数的和的简便运算”这一本质在过去和今天的教材都是一样的。在形式上,新教材允许把“4+4+4+4+4”改写成“4×5”也可以写成“5×4”。反过来,也就是说“5×4”可以表示“4个5相加的和”也可以表示“5个4相加的和”。
(1)整数乘法的意义:求几个相同加数的和的简便运算。如3×4既可以说:4个3相加的和是多少;也可以表述成:3的4倍是多少。
(2)小数乘整数的意义和整数乘整数的意义相同,都是求几个相同加数的和的简便运算。如:2.5×6,表示6个2.5相加的和是多少;也可以表述成2.5的6倍是多少。
2、分数乘法同样不必再区分被乘数和乘数。
3、乘法不是加法的简单记法
(1)乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
(2)加法原理:如果因变量f与自变量(z1,z2,z3…, zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。
扩展资料
数学乘法的速算方法
一、十位数是1的两位数相乘
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
15×17= 255
15 + 7 = 22
5 × 7 = 35
即:220+35=255
二、个位是1的两位数相乘
方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。 例1:
51 × 31 = 1581
50 × 30 = 1500
50 + 30 = 80
1500 + 80 = 1580
因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,
即1580 + 1 = 1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
三、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
43 × 46 = 1978
(43 + 6)× 40 = 1960
3 × 6 = 18
1960+ 18 = 1978
参考资料来源:百度百科-乘法
是指将相同的数加法起来的快捷方式。其运算结果称为积。
另,乘法的新意义:乘法不是加法的简单记法。
乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
扩展资料:
乘法,是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1.乘法交换律: ,注:字母与字母相乘,乘号不用写,或者可以写成·。
参考资料:百度百科-乘法
推荐于2017-11-25
乘法是算术中最简单的运算。 最早来自于整数的乘法运算。
乘法算式中各数的名称
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
乘号 等于号
↑ ↑
10×200=2000
↓ ↓ ↓
因数 因数 积
乘法的运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
乘法的其他说法
在群上再装备另一种乘法, 则发展成为“环”, 两种乘法中的一种可以视为传统意义上的加法,因此要求满足分配律和交换律;但是另一种“乘法”却不要求交换律。
在环里面,我们不再要求消去律成立。 如果这个环有消去律,就叫做整环。
但是对于环来说, 不一定有“除法”的概念。 如果环有除法的话,就叫做“域”。
域是最接近我们平时所说的有理数集合的东西。 但是它包含了更多信息。
不满足结合律的乘法
前面讲的这些代数对象的乘法都满足结合律。 实际上数学发展到后来, 产生了一些不满足结合律的乘法。
最经典的就是所谓的李(lie)括号
乘法的巧算
乘法是数学中基本运算之一。假如a乘以b等于c,即记为a × b = c或a�6�4b = c,亦可写成a b = c。「×」称为乘号。
中国古代利用算筹进行乘法计算。筹算乘法分三层:上位是被乘数,中位是积,下位是乘数。先由乘数的最大一位去乘被乘数,乘完后去掉这位的算筹,再用第二位数去乘,两次之积对应位上的数相加,乘完为止。例如81 × 81,先把乘数和被乘数分别放在上位和下位,如图﹝a﹞。用80去乘81得6480,「8」用完了,便掉去,如图﹝b﹞。再用1去乘81得81加到6480上,即等于6561,「1」亦用完了,便掉去,得图﹝c﹞。
﹝a﹞﹝b﹞﹝c﹞
计算的层次就是把多位数变为用单位数去乘多位数,乘一位加一位,基本原理与现在通用的笔算乘法完全一样,只是使用乘数的次序与现在作法相反。
中世纪,印度流行几种实用而且有趣的乘法。「十字相乘法」是其中一种,印度人称之为闪电似的乘法。例如325 × 478 = 155350
1494年意大利数学家巴切利﹝1445 - 1514﹞介绍了八种乘法。第一种乘法与现在通用的笔算乘法完全一致,第六种就是方格乘法。此法约于十五世纪传入中国,因其图形有如织锦﹝参看下图﹞,故亦称为铺地锦。
3 2 5
8 4
2 6
1 0
4 0
7 1
2 4
1 5
3 5
4 2
1 8
0 0
2 3
1 5 5
若仔细分析上表,﹝甚至可比较「十字相乘法」之算法﹞,则可体会到这些乘法的巧妙之处。
乘法还有巧算,比如:12×15=12×10+15×10+2×5
详细还可以去看神童巧算b
九九乘法表
乘法表
1×1=1
1×2=2 2×2=4
1×3=3 2×3=6 3×3=9
1×4=4 2×4=8 3×4=12 4×4=16
1×5=5 2×5=10 3×5=15 4×5=20 5×5=25
1×6=6 2×6=12 3×6=18 4×6=24 5×6=30 6×6=36
1×7=7 2×7=14 3×7=21 4×7=28 5×7=35 6×7=42 7×7=49
1×8=8 2×8=16 3×8=24 4×8=32 5×8=40 6×8=48 7×8=56 8×8=64
1×9=9 2×9=18 3×9=27 4×9=36 5×9=45 6×9=54 7×9=63 8×9=72 9×9=81
口诀表
一一得一
一二得二 二二得四
一三得三 二三得六 三三得九
一四得四 二四得八 三四十二 四四十六
一五得五 二五一十 三五十五 四五二十 五五二十五
一六得六 二六十二 三六十八 四六二十四 五六三十 六六三十六
一七得七 二七十四 三七二十一 四七二十八 五七三十五 六七四十二 七七四十九
一八得八 二八十六 三八二十四 四八三十二 五八四十 六八四十八 七八五十六 八八六十四
一九得九 二九十八 三九二十七 四九三十六 五九四十五 六九五十四 七九六十三 八九七十二 九九八十一
1、“求几个相同加数的和的简便运算”这一本质在过去和今天的教材都是一样的。在形式上,新教材允许把“4+4+4+4+4”改写成“4×5”也可以写成“5×4”。反过来,也就是说“5×4”可以表示“4个5相加的和”也可以表示“5个4相加的和”。
(1)整数乘法的意义:求几个相同加数的和的简便运算。如3×4既可以说:4个3相加的和是多少;也可以表述成:3的4倍是多少。
(2)小数乘整数的意义和整数乘整数的意义相同,都是求几个相同加数的和的简便运算。如:2.5×6,表示6个2.5相加的和是多少;也可以表述成2.5的6倍是多少。
2、分数乘法同样不必再区分被乘数和乘数。
3、乘法不是加法的简单记法
(1)乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
(2)加法原理:如果因变量f与自变量(z1,z2,z3…, zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。