已知函数fx=sinxcosx-√3sin2x(1)求fx的最小正周期(2)二,求fx在区间(0,π/2)上的最大值和最小值
1个回答
展开全部
1,f(x)=-√3sin^2x+sinxcosx
=√3/2*(cos2x-1)+1/2sin2x
=√3/2cos2x+1/2sin2x-√3/2
=cos(2x-π/6)-√3/2,
最小正周期 T=2π/2=π,
2,x∈【0,π/2】,
则2x-π/6∈【-π/6,5π/6】
当2x-π/6=0时,f(x)取最大值1-√3/2,
当2x-π/6=5π/6时,f(x)取最小值-√3。
所以值域为【-√3,1-√3/2】
=√3/2*(cos2x-1)+1/2sin2x
=√3/2cos2x+1/2sin2x-√3/2
=cos(2x-π/6)-√3/2,
最小正周期 T=2π/2=π,
2,x∈【0,π/2】,
则2x-π/6∈【-π/6,5π/6】
当2x-π/6=0时,f(x)取最大值1-√3/2,
当2x-π/6=5π/6时,f(x)取最小值-√3。
所以值域为【-√3,1-√3/2】
追答
帮助了你满意请采纳。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询