高一分式型函数值域的求法 论文

论文提纲示例:分式刑函数在高中数学中的地位及作用;分式刑函数的分类;各种类型分式型函数值域的求法归类;分式刑函数求值域类问题小结(包括数学思想及易错点)... 论文提纲示例:分式刑函数在高中数学中的地位及作用;分式刑函数的分类;各种类型分式型函数值域的求法归类;分式刑函数求值域类问题小结(包括数学思想及易错点) 展开
匿名用户
2013-08-12
展开全部
数学小论文
高一是数学学习的一个关键时期。我发现,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟斗就栽在数学上。要学好高中数学,要求自己对高中数学知识有整体的认识和把握。
集合
进入高中,学习数学的第一课,就是集合。概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。集合中的元素具有“三性”:(1)确定性:集合中的元素应该是确定的,不能模棱两可。(2)互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。(3)无序性:集合中的元素是无次序关系的。
例:已知集合M={X|X�0�5+X-6=0}集合N={Y|aY+2,a∈R},且N∩CuM=Φ,则实数a=多少?
解:因为N∩CuM=Φ所以N�6�7 M
因为M={X|X�0�5+X-6=0}={-3,2} 所以N={2}或{-3}或{-3,2}
当N=Φ时,a=0
当N={2}时,2a+2=0,a=-1
当N={-3}时,-3a+2=0,a=2/3
所以实数a=0或a=-1或a=2/3
注意:不能忘记Φ时的情况
不等式
(1)绝对值的问题,考虑去绝对值,去绝对值的方法有:对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;通过两边平方去绝对值;需要注意的是不等号两边为非负值。含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(2)分式不等式的解法:通解变形为整式不等式;(3)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。(4)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小。
例:解关于x的不等式x-a/x+1<0
解:将题目整理变形(a-1)x/a<-1,
分类讨论x的系数
(1)当(a-1)/a>0,即a<0或a>1时,x<a/(a-1).
(2)当(a-1)/a<0,即0<a<1时,x>a/(a-1).
(3)当(a-1)/a=0,即a=1时,x取任意实数不等式恒成立.
函数
1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: 含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域
函数的性质:
函数的单调性、奇偶性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:作差比较和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
例:已知f(x)为奇函数,当x>0时,f(x)=x(1-x),则x<0时,f(x)=_______
解:设x<0,那么-x>0代入f(x)=x(1-x),
得f(-x)=-x(1+x), f(x)为奇函数
所以f(-x)=-f(x) 得f(x)=x(1+x),

这是我自己写的,如果好的话,你可以采纳,(*^__^*)...嘻嘻
文秘杂烩网 http://www.rrrwm.com
匿名用户
2013-08-12
展开全部
一、利用导数解决
求导后分母恒非负,分子是二次函数(三次项消掉了),问题就容易解决了
二、不会导数的,可以利用2次方程根的分布来解决,
一般的,形如y=ax^2+bx+c/ex^2+fx+g 且x∈A,A是R的子集,可将函数化为f(y)x^2+g(y)x+u(y)=o的形式,利用二次方程根的分布,使方程在区间A上至少有一个根即可(要考虑在A上有一个和两个根的两种情况)。
附:二次方程根的分布:
二次方程为f(x)=0 在二次项系数为正的情况下做.
1方程有两正根
判别式>=0
对称轴>0
f(0)>0
2有两负根
判别式>=0
对称轴<0
f(0)>0
3两实根都大于K
判别式>=0
对称轴>k
f(k)>0
4两实根都小于K
判别式>=0
对称轴<k
f(k)>0
5有一根大于K,另一根小于K
f(k)<0
6方程的两实数根在(m,n)内
判别式>=0
m<对称轴<n
f(m)>0
f(n)>0
7方程的两实数根中,只有一根在(m,n)内
判别式>=0
f(m)f(n)<0
8方程在区间(m,n)内有两等根
判别式=0
m<对称轴<n
9方程的两根分别在(m,n)和(p,q)内
f(m)f(n)<0
f(p)f(q)<0
对于特殊的,有简便的方法
1,当a/e=c/g(a和c可以是0,e和g不等于0)时,函数可化为y=[kx/(ax^2+bx+c)]+a/e (其中k=b-f*a/e)的形式,把kx/(ax^2+bx+c)的分子分母同时除以x(如果0∈区间A,先使x不等于0,最后再找回x=0的情况),此时分母变成ax+c/x+b的形式,利用“对钩函数”的性质即可解决问题,
2,当a/e=b/f(a和b可以等于0,e和f不等于0)时,函数可化为y=[m/(ax^2+bx+c)]+a/e (其中m=c-g*a/e),m/(ax^2+bx+c)的分母是二次函数,问题即可解决。
3,e=0时,将分母换成新元t,分子是关于t的二次函数,分子分母同除以t,变成“对钩函数”加常数的形式,即可解决。
很高兴回答楼主的问题 如有错误请见谅
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式