学霸~数学题求解 求具体

对于任意给定的一个矩形C,是否存在另一个矩形,使它的周长和面积都是矩形C的2倍?请你说明理由。当实数m是什么值时,对于任何一个矩形C,都存在另一个矩形,使它的周长和面积都... 对于任意给定的一个矩形C,是否存在另一个矩形,使它的周长和面积都是矩形C的2倍?请你说明理由。
当实数m是什么值时,对于任何一个矩形C,都存在另一个矩形,使它的周长和面积都是矩形C的m倍?证明你的结论。
展开
平安一生179
2013-08-10 · TA获得超过823个赞
知道答主
回答量:92
采纳率:100%
帮助的人:72.6万
展开全部
:(1)设已知矩形的长与宽分别为a,b,所求矩形为x,y.
则 x+y=2(a+b) xy=2ab
∴x,y是方程t2-2(a+b)t+2ab=0的两实根.
∵△=4(a+b)2-8ab=4(a2+b2)>0,∴方程有解.
所以,对于长与宽分别为a,b矩形,存在周长与面积都是已知矩形的2倍的矩形;

(2)设已知矩形的长与宽分别为a,b,所求矩形为x,y.
则 x+y=m(a+b) xy=mab
∴x,y是方程t2-m(a+b)t+mab=0的两实根.
当△=[m(a+b)]2-4mab≥0,即m≥4ab (a+b)2 时,方程有解.
所以,对于长与宽分别为a,b的矩形,当m≥4ab (a+b)2 时,存在周长与面积都是已知矩形的m倍的矩形.
∵(a-b)2≥0,
∴a2+b2≥2ab,a2+b2+2ab≥4ab,
即(a+b)2≥4ab,4ab (a+b)2 ≤1,
∴4ab (a+b)2 的最大值为1.
∴当m≥1时,所有的矩形都有周长与面积同时扩大m倍的矩形.
更多追问追答
追问
x,y是方程t2-m(a+b)t+mab=0的两实根.
当△=[m(a+b)]2-4mab≥0,即m≥4ab (a+b)2 时这步怎么转换的呀,,,学霸
追答
是4ab除以(a+b)2,sorry没写清楚。。。这下你应该知道了吧。。。。不懂再问
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式