(1-1/2+1/3-1/4+1/5-1/6+....+1/99-1/100)/(1/102+1/104+1/106+....+1/200=?急
1个回答
展开全部
分子1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
= (1+1/3+1/5+...+1/99)-(1/2+1/4+1/6+...+1/100)
= (1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100)-2×(1/2+1/4+1/6+...+1/100)
= (1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100)-(1+1/2+1/3+...+1/50)
= 1/51+1/52+1/53+...+1/99+1/100.
分母1/102+1/104+1/106+...+1/200
= 1/2×(1/51+1/52+1/53+...+1/100).
因此分子/分母 = 1/(1/2) = 2.
= (1+1/3+1/5+...+1/99)-(1/2+1/4+1/6+...+1/100)
= (1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100)-2×(1/2+1/4+1/6+...+1/100)
= (1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100)-(1+1/2+1/3+...+1/50)
= 1/51+1/52+1/53+...+1/99+1/100.
分母1/102+1/104+1/106+...+1/200
= 1/2×(1/51+1/52+1/53+...+1/100).
因此分子/分母 = 1/(1/2) = 2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询