若数列{an}的通项公式是an=3^-n+2^-n+(-1)^n(3^-n-2^-n)]/2,n=1,2,…,
则limn→∞(a1+a2+…+an)等于()A.11/24B.17/24C.19/24D.25/24...
则limn→∞(a1+a2+…+an)等于( )
A.11/24 B.17/24 C.19/24 D.25/24 展开
A.11/24 B.17/24 C.19/24 D.25/24 展开
1个回答
展开全部
an=[ 3^(-n)+2^(-n)+(-1)^n. (3^(-n)-2^(-n)) ]/2
when n is odd
an = 2^(-n)
a1+a3+...+a(2n-1) = 2^(-1) +2^(-3)+...+ 2^(-(2n-1))
= (1/3)(1- 2^(-2n))
when n is even
an = 3^(-n)
a2+a4+...+a2n = 3^(-2)+3^(-4)+...+3^(-2n)
= (1/8) (1- 3^(-2n) )
a1+a2+...+a(2n) = (1/3)[1- 2^(-2n)] + (1/8) (1- 3^(-2n) )
lim(2n->∞) (a1+a2+..+a2n) = 1/3+ 1/8 = 11/24
lim(n->∞) (a1+a2+..+an) = 11/24
Ans: A:11/24
when n is odd
an = 2^(-n)
a1+a3+...+a(2n-1) = 2^(-1) +2^(-3)+...+ 2^(-(2n-1))
= (1/3)(1- 2^(-2n))
when n is even
an = 3^(-n)
a2+a4+...+a2n = 3^(-2)+3^(-4)+...+3^(-2n)
= (1/8) (1- 3^(-2n) )
a1+a2+...+a(2n) = (1/3)[1- 2^(-2n)] + (1/8) (1- 3^(-2n) )
lim(2n->∞) (a1+a2+..+a2n) = 1/3+ 1/8 = 11/24
lim(n->∞) (a1+a2+..+an) = 11/24
Ans: A:11/24
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询