基本不等式求最值问题
设x,y是正实数,且x+y=1,则x²/(x+2)+y²/(y+1)的最小值是-----------求详解!!O(∩_∩)O谢谢...
设x,y是正实数,且x+y=1,则x²/(x+2)+y²/(y+1)的最小值是-----------
求详解!!
O(∩_∩)O谢谢 展开
求详解!!
O(∩_∩)O谢谢 展开
展开全部
由已知x,y是正实数,且x+y=1,则
x²/(x+2)+y²/(y+1)
=(x²-4+4)/(x+2)+(y²-1+1)/(y+1)
= (x-2)+(y-1)+4/(x+2)+1/(y+1)
= 4/(x+2)+1/(y+1)-2
=4/(x+2)+1/(2-x)-2
=(10-3x)/(4-x²)-2
设
f(x)=(10-3x)/(4-x²)
求导得
f'(x)=(-3x²+20x-12)/(4-x²)²
令f'(x)=0可得
x=2/3(或6舍)
故
(0,2/3)为单调减区间,(2/3,1)为单调增区间
即
当x=2/3时,f(x)取最小值
此时
x²/(x+2)+y²/(y+1)=f(x)-2也取得最小值
计算可得最小值=1/4
x²/(x+2)+y²/(y+1)
=(x²-4+4)/(x+2)+(y²-1+1)/(y+1)
= (x-2)+(y-1)+4/(x+2)+1/(y+1)
= 4/(x+2)+1/(y+1)-2
=4/(x+2)+1/(2-x)-2
=(10-3x)/(4-x²)-2
设
f(x)=(10-3x)/(4-x²)
求导得
f'(x)=(-3x²+20x-12)/(4-x²)²
令f'(x)=0可得
x=2/3(或6舍)
故
(0,2/3)为单调减区间,(2/3,1)为单调增区间
即
当x=2/3时,f(x)取最小值
此时
x²/(x+2)+y²/(y+1)=f(x)-2也取得最小值
计算可得最小值=1/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询