在证明对称区间上函数的定积分性质时的问题。

令x=-t,∫f(x)dx(-a→0)=∫f(-t)(-dt)(a→0)=∫f(-t)dt(0→a)=∫f(-x)dx(0→a)。其中为什么∫f(-t)dt(0→a)=∫... 令x=-t,∫f(x)dx(-a→0)=∫f(-t)(-dt)(a→0)=∫f(-t)dt(0→a)=∫f(-x)dx(0→a)。其中为什么∫f(-t)dt(0→a)=∫f(-x)dx(0→a)?是直接将t换成x吗?如果是的话为什么可以直接替换而不用考虑x=-t? 展开
lI50lI
2013-08-13 · TA获得超过9297个赞
知道大有可为答主
回答量:3193
采纳率:23%
帮助的人:1377万
展开全部
这里的x和t都是假变量,在定积分中可以任意换不同的字母

至于为啥是换x而不是- x呢?这就是不定积分和定积分的分别
在不定积分的计算中,所有的换元都是暂时性的,在取积分后要根据还原等式回代
所以∫ f[g(x)]g'(x) dx,令u = g(x),du = g'(x) dx
==> ∫ f(u) du = F(u) + C
==> ∫ f[g(x)]g'(x) dx = F[g(x)] + C,F(x)为f(x)的原函数
在定积分的计算中,所有的换元都是永久性的,它们的换元变化都移到积分限上,所以积分后可以直接沿用结果中的字母。当然,你亦可以先找出原函数然后再带入上下限,只是积分限没改变。
例如∫(a→b) f[g(x)]g'(x) dx,令u = g(x),du = g'(x) dx
当x = a,u = g(a);当x = b,u = g(b)
==> ∫(g(a)→g(b)) f(u) du = [F(u)]:(g(a)→g(b)) = F[g(b)] - F[g(a)]
==> ∫(a→b) f[g(x)]g'(x) dx = F[g(b)] - F[g(a)]
这和直接找出原函数后再带入a和b的做法没分别。
Just_CKwindy
2013-08-12 · 超过10用户采纳过TA的回答
知道答主
回答量:37
采纳率:0%
帮助的人:28.4万
展开全部
因为那只是字母啊 只是代表一个自变量 不用管它是x还是t还是y
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式